找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry Over Nonclosed Fields; Fedor Bogomolov,Brendan Hassett,Yuri Tschinkel Conference proceedings 2017 Springer International Publishi

[復(fù)制鏈接]
樓主: fumble
11#
發(fā)表于 2025-3-23 11:53:14 | 只看該作者
A Stronger Derived Torelli Theorem for K3 Surfaces,zations of the Mukai motive. It is shown that if a filtered derived equivalence between K3 surfaces also preserves ample cones then one can find an isomorphism that induces the same map as the equivalence on the cohomological realizations.
12#
發(fā)表于 2025-3-23 16:28:45 | 只看該作者
13#
發(fā)表于 2025-3-23 20:55:08 | 只看該作者
Einführung in das Bürgerliche Rechtin the special case that the target is projective space, [.] (Pandharipande, Trans. Am. Math. Soc. 351(4), 1481–1505, 1999), [.] (Pandharipande, Trans. Am. Math. Soc. 351(4), 1481–1505, 1999). Our method is completely different from Pandharipande’s.
14#
發(fā)表于 2025-3-24 01:00:51 | 只看該作者
https://doi.org/10.1007/978-3-658-08032-7zations of the Mukai motive. It is shown that if a filtered derived equivalence between K3 surfaces also preserves ample cones then one can find an isomorphism that induces the same map as the equivalence on the cohomological realizations.
15#
發(fā)表于 2025-3-24 04:18:49 | 只看該作者
,Betreuungsrecht und Bankgesch?fte,phism of a hyperk?hler manifold, we prove that its cohomology eigenvalues are determined by its Hodge numbers, compute its dynamical degree and show that its cohomological trace grows exponentially, giving estimates on the number of its periodic points.
16#
發(fā)表于 2025-3-24 09:24:20 | 只看該作者
,On the Kobayashi Pseudometric, Complex Automorphisms and Hyperk?hler Manifolds,phism of a hyperk?hler manifold, we prove that its cohomology eigenvalues are determined by its Hodge numbers, compute its dynamical degree and show that its cohomological trace grows exponentially, giving estimates on the number of its periodic points.
17#
發(fā)表于 2025-3-24 14:45:27 | 只看該作者
978-3-319-84235-6Springer International Publishing AG 2017
18#
發(fā)表于 2025-3-24 17:24:16 | 只看該作者
19#
發(fā)表于 2025-3-24 23:01:42 | 只看該作者
,Betreuungsrecht und Bankgesch?fte,mplex projective manifold has an automorphism whose order is infinite, then the fibers of this quotient map are nontrivial. We prove that the Kobayashi quotients associated to ergodic complex structures on a compact manifold are isomorphic. We also give a proof of Kobayashi’s conjecture on the vanis
20#
發(fā)表于 2025-3-25 00:06:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汝南县| 木里| 全州县| 呈贡县| 泸溪县| 乐昌市| 丰顺县| 深水埗区| 桂林市| 东港市| 陇南市| 合水县| 仙居县| 甘肃省| 盐山县| 阜宁县| 阜城县| 本溪| 曲周县| 奎屯市| 漯河市| 鄱阳县| 古丈县| 新建县| 北宁市| 贵溪市| 汤原县| 尉犁县| 镇赉县| 齐河县| 平利县| 苏尼特右旗| 玛纳斯县| 和田市| 芦溪县| 梓潼县| 山丹县| 青田县| 尚义县| 专栏| 扶余县|