找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry; Michèle Audin Textbook 2003 Springer-Verlag Berlin Heidelberg 2003 51XX.53XX.Area.Euclidean geometry.conics.differential geometr

[復(fù)制鏈接]
樓主: hector
11#
發(fā)表于 2025-3-23 12:20:18 | 只看該作者
Affine Geometry,An affine space is a set of points; it contains lines, etc. and affine geometry. deals, for instance, with the relations between these points and these lines (collinear points, parallel or concurrent lines…). To define these objects and describe their relations, one can:
12#
發(fā)表于 2025-3-23 15:10:21 | 只看該作者
13#
發(fā)表于 2025-3-23 18:33:18 | 只看該作者
Euclidean Geometry in Space,In this chapter, everything will take place in a Euclidean (affine or vector) space of dimension 3.
14#
發(fā)表于 2025-3-23 23:08:55 | 只看該作者
15#
發(fā)表于 2025-3-24 02:24:37 | 只看該作者
Conics and Quadrics,This chapter is devoted to quadrics and especially to conics. I have tried to keep a balance between:
16#
發(fā)表于 2025-3-24 10:02:04 | 只看該作者
17#
發(fā)表于 2025-3-24 13:32:40 | 只看該作者
Hans-Joachim Opitz,Hasso von Wedele is also, and we are forced to begin with this, a discussion of what an angle is and how to measure it. The proofs are of course very simple but the statements and their precision are subtle and important.
18#
發(fā)表于 2025-3-24 15:03:12 | 只看該作者
Euclidean Geometry in the Plane,e is also, and we are forced to begin with this, a discussion of what an angle is and how to measure it. The proofs are of course very simple but the statements and their precision are subtle and important.
19#
發(fā)表于 2025-3-24 21:29:01 | 只看該作者
20#
發(fā)表于 2025-3-25 00:36:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 16:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沈丘县| 泾源县| 布尔津县| 隆化县| 许昌县| 那坡县| 东明县| 通榆县| 原平市| 南澳县| 鸡泽县| 玉林市| 镇江市| 平陆县| 那坡县| 永胜县| 那坡县| 泸州市| 鄂尔多斯市| 云林县| 南丰县| 曲靖市| 长宁区| 辰溪县| 马边| 阜城县| 海宁市| 新宁县| 巴青县| 棋牌| 辽阳县| 商河县| 淅川县| 峨眉山市| 阳曲县| 绥棱县| 南昌县| 永修县| 双鸭山市| 五常市| 天台县|