找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometrie der Raumzeit; Eine mathematische E Rainer Oloff Textbook 20043rd edition Springer Fachmedien Wiesbaden 2004 Astrophysik.Geod?ten.

[復(fù)制鏈接]
樓主: affront
41#
發(fā)表于 2025-3-28 14:58:38 | 只看該作者
Die kovariante Ableitung von Vektorfeldern,Gegenstand dieses Kapitels ist die Beschreibung der ?nderung eines Vektorfeldes . bei einer kleinen Verschiebung des Punktes .. Im Punkt . m?chten wir aus einem Vektorfeld und einem Vektor . ∈ . bei der Richtungsableitung wieder einen Vektor aus . erhalten.
42#
發(fā)表于 2025-3-28 18:57:47 | 只看該作者
,Krümmung,Wir w?hlen hier einen abstrakten Zugang, bei dem zun?chst nichts von dem zu erkennen ist, was man sich bei einer Fl?che in ?. unter Krümmung vorstellt. Weil der Begriff der kovarianten Ableitung verwendet wird, ist eine semi-Riemannsche Mannigfaltigkeit [.,.] zugrunde zu legen.
43#
發(fā)表于 2025-3-29 00:34:48 | 只看該作者
Die Lie-Ableitung,Wie schon im Abschnitt 2.3 erw?hnt, ist ein Vektorfeld als Str?mung zu deuten. Es liegt nun nahe zu untersuchen, wohin diese Str?mung ein Teilchen im Verlaufe einer bestimmten Zeitspanne transportiert (Bild 12.1).
44#
發(fā)表于 2025-3-29 06:01:02 | 只看該作者
Integration auf Mannigfaltigkeiten,Der Begriff der Mannigfaltigkeit umfa?t gekrümmte Kurven und Fl?chen im dreidimensionalen euklidischen Raum. Ein Integralbegriff auf Mannigfaltigkeiten sollte deshalb Kurvenintegrale und Oberfl?chenintegrale verallgemeinern.
45#
發(fā)表于 2025-3-29 08:18:41 | 只看該作者
46#
發(fā)表于 2025-3-29 14:40:54 | 只看該作者
https://doi.org/10.1007/978-94-011-7339-1von Isomorphismen zwischen den Tangentialr?umen. Dadurch ergibt sich dann eine Charakterisierung der kovarianten Ableitungen von Vektorfeldern, die sich zu einer Definition der kovarianten Ableitung von Tensorfeldern verallgemeinern l??t.
47#
發(fā)表于 2025-3-29 18:52:15 | 只看該作者
48#
發(fā)表于 2025-3-29 21:33:51 | 只看該作者
Kovariante Differentiation von Tensorfeldern,von Isomorphismen zwischen den Tangentialr?umen. Dadurch ergibt sich dann eine Charakterisierung der kovarianten Ableitungen von Vektorfeldern, die sich zu einer Definition der kovarianten Ableitung von Tensorfeldern verallgemeinern l??t.
49#
發(fā)表于 2025-3-30 02:02:58 | 只看該作者
50#
發(fā)表于 2025-3-30 05:37:03 | 只看該作者
https://doi.org/10.1007/978-90-313-8255-2gefa?t. Da sich Schwingungsvorg?nge sonst immer auf ein bestimmtes Medium beziehen, wurde damals ein fiktiver . als Tr?ger der Feldst?rken angesehen. In einem relativ zu diesem ?ther ruhenden Bezugssystem mü?te sich das Licht in alle Richtungen mit der gleichen Geschwindigkeit ausbreiten. In einem z
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 21:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜阳县| 房产| 梨树县| 当涂县| 乌海市| 耒阳市| 页游| 融水| 乡宁县| 临泉县| 章丘市| 怀宁县| 宜兴市| 武功县| 新竹市| 辛集市| 布尔津县| 满洲里市| 信丰县| 新营市| 平顺县| 奉节县| 麦盖提县| 高州市| 丰宁| 鄂伦春自治旗| 鹤庆县| 海盐县| 临湘市| 安泽县| 庐江县| 思茅市| 鸡东县| 博白县| 江西省| 黑龙江省| 达拉特旗| 阳信县| 迁西县| 普陀区| 朝阳市|