找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometrical Methods in Variational Problems; N. A. Bobylev,S. V. Emel’yanov,S. K. Korovin Book 1999 Springer Science+Business Media Dordre

[復(fù)制鏈接]
樓主: malignant
11#
發(fā)表于 2025-3-23 12:36:48 | 只看該作者
12#
發(fā)表于 2025-3-23 16:24:38 | 只看該作者
13#
發(fā)表于 2025-3-23 19:55:01 | 只看該作者
https://doi.org/10.1007/978-3-658-42525-8oblems, problems of the classical calculus of variations, higher-dimensional variational problems, and mathematical programming problems. Conceptually, the homotopic method is based on the following observation: if in the process of deformation of a variational problem, an extremal is uniformly isol
14#
發(fā)表于 2025-3-24 02:16:07 | 只看該作者
Introduction to the E3-India Model,valent to it; these theories originate in the classical studies of Poincaré, Brouwer, Kronecker, Hopf, Leray, and Schauder. The apparatus of the degree theory of mapping is one of the basic tools of nonlinear analysis and its applications. Therefore, we present the auxiliary material of this chapter
15#
發(fā)表于 2025-3-24 05:24:34 | 只看該作者
Minimization of Nonlinear Functionals,lculus of variations, optimal control theory, mathematical physics, mechanics, .. In this chapter, we present general theorems of the minimum of nonlinear functionals, which form a basis of variational methods.
16#
發(fā)表于 2025-3-24 09:23:30 | 只看該作者
17#
發(fā)表于 2025-3-24 10:40:46 | 只看該作者
18#
發(fā)表于 2025-3-24 18:16:55 | 只看該作者
https://doi.org/10.1007/978-3-658-42525-8, the homotopic method is based on the following observation: if in the process of deformation of a variational problem, an extremal is uniformly isolated with respect to a parameter, then its property to be a point of minimum is a homotopy invariant. This chapter is devoted to the verification of this principle, which has many applications.
19#
發(fā)表于 2025-3-24 20:31:46 | 只看該作者
20#
發(fā)表于 2025-3-25 01:28:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 23:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
淄博市| 墨竹工卡县| 勃利县| 永登县| 海阳市| 揭阳市| 衡南县| 南涧| 无极县| 衡水市| 太原市| 重庆市| 泰顺县| 汶川县| 黔西| 嘉黎县| 扶沟县| 疏附县| 沂南县| 象州县| 改则县| 油尖旺区| 灌阳县| 香港 | 江油市| 荆门市| 内江市| 涪陵区| 玉田县| 平定县| 四平市| 佳木斯市| 田林县| 慈溪市| 长汀县| 南岸区| 枝江市| 常熟市| 台山市| 奉新县| 沁阳市|