找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometrical Methods in Variational Problems; N. A. Bobylev,S. V. Emel’yanov,S. K. Korovin Book 1999 Springer Science+Business Media Dordre

[復(fù)制鏈接]
樓主: malignant
11#
發(fā)表于 2025-3-23 12:36:48 | 只看該作者
12#
發(fā)表于 2025-3-23 16:24:38 | 只看該作者
13#
發(fā)表于 2025-3-23 19:55:01 | 只看該作者
https://doi.org/10.1007/978-3-658-42525-8oblems, problems of the classical calculus of variations, higher-dimensional variational problems, and mathematical programming problems. Conceptually, the homotopic method is based on the following observation: if in the process of deformation of a variational problem, an extremal is uniformly isol
14#
發(fā)表于 2025-3-24 02:16:07 | 只看該作者
Introduction to the E3-India Model,valent to it; these theories originate in the classical studies of Poincaré, Brouwer, Kronecker, Hopf, Leray, and Schauder. The apparatus of the degree theory of mapping is one of the basic tools of nonlinear analysis and its applications. Therefore, we present the auxiliary material of this chapter
15#
發(fā)表于 2025-3-24 05:24:34 | 只看該作者
Minimization of Nonlinear Functionals,lculus of variations, optimal control theory, mathematical physics, mechanics, .. In this chapter, we present general theorems of the minimum of nonlinear functionals, which form a basis of variational methods.
16#
發(fā)表于 2025-3-24 09:23:30 | 只看該作者
17#
發(fā)表于 2025-3-24 10:40:46 | 只看該作者
18#
發(fā)表于 2025-3-24 18:16:55 | 只看該作者
https://doi.org/10.1007/978-3-658-42525-8, the homotopic method is based on the following observation: if in the process of deformation of a variational problem, an extremal is uniformly isolated with respect to a parameter, then its property to be a point of minimum is a homotopy invariant. This chapter is devoted to the verification of this principle, which has many applications.
19#
發(fā)表于 2025-3-24 20:31:46 | 只看該作者
20#
發(fā)表于 2025-3-25 01:28:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 03:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
酒泉市| 石柱| 四川省| 科技| 滨州市| 班戈县| 铜鼓县| 化德县| 东阿县| 德庆县| 包头市| 澄江县| 大化| 金华市| 蒙自县| 潼关县| 邳州市| 广水市| 博客| 陈巴尔虎旗| 泰来县| 错那县| 环江| 日土县| 南和县| 辽宁省| 阿图什市| 莱西市| 平乐县| 云阳县| 云南省| 临夏县| 西和县| 灵川县| 通辽市| 福鼎市| 云霄县| 石楼县| 大新县| 普宁市| 修水县|