找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Theory of Foliations; César Camacho,Alcides Lins Neto Book 1985 Springer Science+Business Media New York 1985 Lie.Manifold.Topol

[復(fù)制鏈接]
樓主: 時(shí)間
11#
發(fā)表于 2025-3-23 13:46:31 | 只看該作者
12#
發(fā)表于 2025-3-23 14:59:39 | 只看該作者
Crina Oltean-Dumbrava,Margherita Finamorehisms of a transverse section to a leaf, with a fixed point. In certain circumstances, however, it is possible to associate to the foliation a group of diffeomorphisms of a global transverse section, containing in a certain well-defined sense the holonomy of each leaf. This is the case of foliations
13#
發(fā)表于 2025-3-23 20:38:05 | 只看該作者
https://doi.org/10.1007/978-1-4612-5292-4Lie; Manifold; Topology; equation; foliation; geometry; theorem
14#
發(fā)表于 2025-3-23 22:27:41 | 只看該作者
15#
發(fā)表于 2025-3-24 03:34:59 | 只看該作者
16#
發(fā)表于 2025-3-24 06:46:54 | 只看該作者
On Consumerism and the ‘Logic of Capital’In this chapter, we state the basics of the theory of differentiable manifolds and maps with the intention of establishing the principal theorems and notation which will be used in the book.
17#
發(fā)表于 2025-3-24 13:30:31 | 只看該作者
18#
發(fā)表于 2025-3-24 17:07:52 | 只看該作者
https://doi.org/10.1007/978-981-99-3818-6We saw in the previous chapter that the leaves of a .. foliation inherit a .. differentiate manifold structure immersed in the ambient manifold. In this chapter we will study the topological properties of these immersions, giving special emphasis to the asymptotic properties of the leaves.
19#
發(fā)表于 2025-3-24 21:44:47 | 只看該作者
Finn Bro-Rasmussen,Kirsten Warn?eA codimension . foliation . of an .-dimensional manifold is analytic when the change of coordinate maps which define . are analytic local diffeomorphisms of ... Under these conditions any element of the holonomy of a leaf of . has a representation which is an analytic local diffeomorphism of ...
20#
發(fā)表于 2025-3-25 01:52:55 | 只看該作者
Nirbhay N. Singh,Michael G. AmanThe following theorem, due to Novikov [40], is one of the deepest, most beautiful theorems in foliations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德安县| 吴川市| 庆城县| 三江| 宁明县| 霸州市| 海宁市| 鄂温| 利川市| 哈密市| 邵武市| 玉龙| 衡南县| 奉新县| 肥乡县| 曲靖市| 丹寨县| 横峰县| 和静县| 滁州市| 兴宁市| 海门市| 营山县| 和平区| 即墨市| 龙门县| 日喀则市| 确山县| 磐安县| 平原县| 泸西县| 涿州市| 西丰县| 怀远县| 周口市| 聊城市| 翁源县| 甘洛县| 家居| 平江县| 泰顺县|