找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Sums: Bounds for Rare Events with Applications; Risk Analysis, Relia Vladimir Kalashnikov Book 1997 Springer Science+Business Med

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 10:51:07 | 只看該作者
12#
發(fā)表于 2025-3-23 17:21:35 | 只看該作者
13#
發(fā)表于 2025-3-23 19:24:51 | 只看該作者
Echocardiography in Mitral Valve Diseasensider the case where the d.f. . of summands in the underlying geometric sum may vary together with parameter . of the corresponding geometric distribution. Although the limiting results are ., they can easily be stated in the form of .. This is partly done in this chapter but generally this problem
14#
發(fā)表于 2025-3-24 02:06:53 | 只看該作者
15#
發(fā)表于 2025-3-24 06:03:26 | 只看該作者
16#
發(fā)表于 2025-3-24 07:53:42 | 只看該作者
17#
發(fā)表于 2025-3-24 12:11:41 | 只看該作者
Carla B. Rynkowski,Marcel J. Ariesgenerative processes. Such processes play a noticeable role in the theory of random processes and have many applications in biology, queueing, reliability, Markov chains, risk theory, simulation, etc. Typically, we study . taking reliability regenerative models as an example where such events can be
18#
發(fā)表于 2025-3-24 18:32:26 | 只看該作者
978-90-481-4868-4Springer Science+Business Media Dordrecht 1997
19#
發(fā)表于 2025-3-24 22:43:44 | 只看該作者
20#
發(fā)表于 2025-3-25 02:36:09 | 只看該作者
Metric Bounds,etrics in Sections 5.3 and 5.4 correspondingly. In Section 5.5 we analyze the continuity problem examining the deviations of . .(.) resulted from perturbations of the d.f. .. Two important generalizations (summands taking both positive and negative values and multivariate case) are considered in Sections 5.6 and 5.7 respectively.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
舞钢市| 武冈市| 驻马店市| 定安县| 武山县| 三河市| 甘德县| 深泽县| 赞皇县| 长兴县| 东源县| 正安县| 荆州市| 精河县| 湘乡市| 甘孜| 巢湖市| 萨嘎县| 丰镇市| 尼木县| 太仆寺旗| 班玛县| 曲靖市| 垣曲县| 新丰县| 错那县| 安新县| 崇义县| 临夏县| 淮滨县| 眉山市| 启东市| 丁青县| 望谟县| 道真| 九龙城区| 灌云县| 晋中市| 忻州市| 安康市| 额敏县|