找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Singular Perturbation Theory Beyond the Standard Form; Martin Wechselberger Book 2020 The Editor(s) (if applicable) and The Auth

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 03:30:32 | 只看該作者
Motivating Examples,In this chapter we present models that fall under the category of standard singularly perturbation systems (.), respectively, (.) as well as less known variants of these models that are of the general form (.), respectively, (.).
22#
發(fā)表于 2025-3-25 07:29:44 | 只看該作者
A Coordinate-Independent Setup for GSPT,This chapter is devoted to present a geometric approach to singular perturbation theory for ordinary differential equations. The material is based on Fenichel’s seminal work on . with a particular emphasis on his coordinate-independent approach (see [.], Sections 5–9).
23#
發(fā)表于 2025-3-25 15:37:58 | 只看該作者
24#
發(fā)表于 2025-3-25 16:42:02 | 只看該作者
What We Did Not Discuss,Finally, we briefly mention a few selected topics on GSPT that have not been covered in this manuscript. This list of topics is non-inclusive—it is an author’s choice (like all topics covered in this manuscript).
25#
發(fā)表于 2025-3-25 20:12:41 | 只看該作者
978-3-030-36398-7The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
26#
發(fā)表于 2025-3-26 00:54:19 | 只看該作者
27#
發(fā)表于 2025-3-26 07:35:40 | 只看該作者
Hongbo Ren,Weisheng Zhou,Xuepeng Qians reflect these multiple-scale features as well. Mathematical models of such multiple-scale systems are considered singular perturbation problems with two-scale problems as the most prominent. Singular perturbation theory studies systems featuring a small perturbation parameter reflecting the scale
28#
發(fā)表于 2025-3-26 11:57:18 | 只看該作者
tem to switch between slow and fast dynamics as observed in many relaxation oscillator models; see Chap. .. Geometrically, loss of normal hyperbolicity occurs generically along (a union of) codimension-one submanifold(s) of . where a nontrivial eigenvalue of the layer problem crosses the imaginary a
29#
發(fā)表于 2025-3-26 14:06:08 | 只看該作者
https://doi.org/10.1057/9781137315762o far: .Partial answers to the above questions can be found in classic . [.] which focuses on understanding significant changes in dynamical systems outputs under system parameter variations. The time-scale splitting in our singular perturbation problems creates additional complexity and sometimes s
30#
發(fā)表于 2025-3-26 20:22:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 07:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奉贤区| 临湘市| 莱西市| 明星| 樟树市| 天柱县| 莱芜市| 汝州市| 金溪县| 五台县| 轮台县| 榆中县| 洪雅县| 黄冈市| 宁德市| 新余市| 出国| 清远市| 敦化市| 日土县| 抚顺县| 宾川县| 尚志市| 榆树市| 元谋县| 孙吴县| 金溪县| 南丰县| 蓬莱市| 贞丰县| 吉安市| 小金县| 任丘市| 远安县| 绩溪县| 尼勒克县| 清丰县| 涿州市| 嘉祥县| 大关县| 宁城县|