找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Geometric Properties of Banach Spaces and Nonlinear Iterations; Charles Chidume Book 2009 Springer-Verlag London 2009 45XX.46XX.47XX.49XX.

[復(fù)制鏈接]
樓主: dejected
51#
發(fā)表于 2025-3-30 09:27:18 | 只看該作者
,Iteration Processes for Zeros of Generalized Ф —Accretive Mappings,
52#
發(fā)表于 2025-3-30 16:21:57 | 只看該作者
53#
發(fā)表于 2025-3-30 19:36:12 | 只看該作者
54#
發(fā)表于 2025-3-30 22:13:58 | 只看該作者
Book 2009)||y|| ??(1??)||x?y|| , (??) which hold for all x,y? H, are some of the geometric properties that char- terize inner product spaces and also make certain problems posed in Hilbert spaces more manageable than those in general Banach spaces. However, as has been rightly observed by M. Hazewinkel, “...
55#
發(fā)表于 2025-3-31 01:34:56 | 只看該作者
56#
發(fā)表于 2025-3-31 07:25:11 | 只看該作者
ESD Protection for RF Circuits,[26], Bynum [61, 62], Clarkson [191], Lindenstrauss ([309], [310]), Hanner [247], Kay [276], Lim [306, 303], Lindenstrauss and Tzafriri [311], Prus and Smarzewski [387], Reich [408], Tribunov [491], Xu [509], Xu [523], Xu and Roach [525], and a host of other authors). In this chapter (and also in Ch
57#
發(fā)表于 2025-3-31 09:19:37 | 只看該作者
Some Geometric Properties of Banach Spaces,tudy of iterative algorithms for nonlinear operators in various Banach spaces..In this chapter, we introduce the classes of . and . spaces, and in Chapter 2, we shall introduce the class of .. All the results presented in these two chapters are well-known and standard and can be found in several boo
58#
發(fā)表于 2025-3-31 15:43:49 | 只看該作者
59#
發(fā)表于 2025-3-31 20:24:45 | 只看該作者
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 05:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新乡县| 马山县| 潢川县| 巴林左旗| 南投市| 白沙| 兴义市| 咸阳市| 侯马市| 屏南县| 桦南县| 腾冲县| 多伦县| 东明县| 嘉祥县| 三都| 镇江市| 乐昌市| 九龙城区| 垫江县| 基隆市| 仪征市| 广西| 松阳县| 惠州市| 黎平县| 通榆县| 福州市| 齐河县| 洪雅县| 临泽县| 吉林省| 巨野县| 海林市| 双柏县| 五原县| 榆社县| 万荣县| 阿拉善右旗| 大冶市| 新竹市|