找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Optimal Control; Theory, Methods and Heinz Sch?ttler,Urszula Ledzewicz Textbook 2012 Springer Science+Business Media, LLC 2012 L

[復制鏈接]
樓主: 小缺點
21#
發(fā)表于 2025-3-25 06:24:31 | 只看該作者
22#
發(fā)表于 2025-3-25 08:55:16 | 只看該作者
Stephan Güsken,Gero Ritzenh?fer a point. If the reachable sets are known exactly, not only necessary conditions, but complete solutions can be obtained for related optimal control problems (e.g., the time-optimal control problem). In general, determining these sets is as difficult a problem as solving an optimal control problem.
23#
發(fā)表于 2025-3-25 13:39:24 | 只看該作者
24#
發(fā)表于 2025-3-25 17:23:45 | 只看該作者
Reachable Sets of Linear Time-Invariant Systems: From Convex Sets to the Bang-Bang Theorem,As a precursor to the proof of the maximum principle for a general nonlinear system, in this chapter we develop the classical results about the structure of the reachable set for linear time-invariant systems with bounded control sets and prove Theorem 2.5.3 of Chap. 2.
25#
發(fā)表于 2025-3-25 20:32:06 | 只看該作者
26#
發(fā)表于 2025-3-26 00:35:24 | 只看該作者
27#
發(fā)表于 2025-3-26 06:10:40 | 只看該作者
Textbook 2012ry to the advanced. Parts of the text can be viewed as a comprehensive textbook for both advanced undergraduate and all level graduate courses on optimal control in both mathematics and engineering departments. The text moves smoothly from the more introductory topics to those parts that are in a mo
28#
發(fā)表于 2025-3-26 09:43:26 | 只看該作者
29#
發(fā)表于 2025-3-26 12:55:07 | 只看該作者
Textbook 2012 optimal control problems. The emphasis is on the geometric aspects of the theory and on illustrating how these methods can be used to solve optimal control problems. It provides tools and techniques that go well beyond standard procedures and can be used to obtain a full understanding of the global
30#
發(fā)表于 2025-3-26 20:47:16 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 13:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
桑日县| 呼玛县| 前郭尔| 深水埗区| 彭泽县| 裕民县| 南昌县| 汉中市| 龙江县| 普宁市| 咸丰县| 延安市| 竹溪县| 彭山县| 湾仔区| 苏尼特左旗| 隆子县| 攀枝花市| 彰化县| 新丰县| 九寨沟县| 临汾市| 嫩江县| 宜春市| 自治县| 昌宁县| 堆龙德庆县| 台东县| 平顺县| 岳西县| 昆山市| 兴化市| 勃利县| 时尚| 涞源县| 翼城县| 乾安县| 阿拉善左旗| 出国| 类乌齐县| 孝感市|