找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Numerical Integration; Structure-Preserving Ernst Hairer,Gerhard Wanner,Christian Lubich Book 2006Latest edition Springer-Verlag

[復(fù)制鏈接]
查看: 26536|回復(fù): 57
樓主
發(fā)表于 2025-3-21 16:14:12 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometric Numerical Integration
副標(biāo)題Structure-Preserving
編輯Ernst Hairer,Gerhard Wanner,Christian Lubich
視頻videohttp://file.papertrans.cn/384/383580/383580.mp4
叢書名稱Springer Series in Computational Mathematics
圖書封面Titlebook: Geometric Numerical Integration; Structure-Preserving Ernst Hairer,Gerhard Wanner,Christian Lubich Book 2006Latest edition Springer-Verlag
描述.Numerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions are the subject of this book. A complete self-contained theory of symplectic and symmetric methods, which include Runge-Kutta, composition, splitting, multistep and various specially designed integrators, is presented and their construction and practical merits are discussed. The long-time behaviour of the numerical solutions is studied using a backward error analysis (modified equations) combined with KAM theory. The book is illustrated by many figures, it treats applications from physics and astronomy and contains many numerical experiments and comparisons of different approaches. The second edition is substantially revised and enlarged, with many improvements in the presentation and additions concerning in particular non-canonical Hamiltonian systems, highly oscillatory mechanical systems, and the dynamics of multistep methods..
出版日期Book 2006Latest edition
關(guān)鍵詞Hamiltonian and reversible systems; Numerical integration; algorithms; calculus; differential equations
版次2
doihttps://doi.org/10.1007/3-540-30666-8
isbn_softcover978-3-642-05157-9
isbn_ebook978-3-540-30666-5Series ISSN 0179-3632 Series E-ISSN 2198-3712
issn_series 0179-3632
copyrightSpringer-Verlag Berlin Heidelberg 2006
The information of publication is updating

書目名稱Geometric Numerical Integration影響因子(影響力)




書目名稱Geometric Numerical Integration影響因子(影響力)學(xué)科排名




書目名稱Geometric Numerical Integration網(wǎng)絡(luò)公開度




書目名稱Geometric Numerical Integration網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Numerical Integration被引頻次




書目名稱Geometric Numerical Integration被引頻次學(xué)科排名




書目名稱Geometric Numerical Integration年度引用




書目名稱Geometric Numerical Integration年度引用學(xué)科排名




書目名稱Geometric Numerical Integration讀者反饋




書目名稱Geometric Numerical Integration讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:42:42 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:52:39 | 只看該作者
https://doi.org/10.1007/3-540-30666-8Hamiltonian and reversible systems; Numerical integration; algorithms; calculus; differential equations
地板
發(fā)表于 2025-3-22 06:30:54 | 只看該作者
Common Problem Areas and Solutions,Hamiltonian systems form the most important class of ordinary differential equations in the context of ‘Geometric Numerical Integration’. An outstanding property of these systems is the symplecticity of the flow. As indicated in the following diagram
5#
發(fā)表于 2025-3-22 12:03:19 | 只看該作者
Sian Adiseshiah,Jacqueline BoltonWe discuss theoretical properties and the structure-preserving numerical treatment of Hamiltonian systems on manifolds and of the closely related class of Poisson systems.We present numerical integrators for problems from classical and quantum mechanics.
6#
發(fā)表于 2025-3-22 16:16:12 | 只看該作者
,Exposition: Identit?t(s)Brocken,One of the greatest virtues of backward analysis. is that when it is the appropriate form of analysis it tends to be very markedly superior to forward analysis. Invariably in such cases it has remarkable formal simplicity and gives deep insight into the stability (or lack of it) of the algorithm.
7#
發(fā)表于 2025-3-22 19:00:41 | 只看該作者
8#
發(fā)表于 2025-3-22 22:08:55 | 只看該作者
9#
發(fā)表于 2025-3-23 01:29:37 | 只看該作者
Non-Canonical Hamiltonian Systems,We discuss theoretical properties and the structure-preserving numerical treatment of Hamiltonian systems on manifolds and of the closely related class of Poisson systems.We present numerical integrators for problems from classical and quantum mechanics.
10#
發(fā)表于 2025-3-23 06:44:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 04:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌苏市| 龙岩市| 福泉市| 嘉荫县| 民丰县| 丹江口市| 赞皇县| 新乡市| 固安县| 团风县| 三门峡市| 建宁县| 林西县| 高雄县| 临澧县| 鄂州市| 柘荣县| 嘉义县| 上思县| 阿尔山市| 鞍山市| 台东市| 城市| 孟村| 沂南县| 泰来县| 壤塘县| 德惠市| 阳江市| 迁西县| 陆川县| 右玉县| 郑州市| 崇州市| 泊头市| 隆回县| 海口市| 香港| 威远县| 凤庆县| 宁蒗|