找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Modeling and Algebraic Geometry; Bert Jüttler,Ragni Piene Book 2008 Springer-Verlag Berlin Heidelberg 2008 Algebraic Geometry.Cl

[復(fù)制鏈接]
樓主: Insularity
11#
發(fā)表于 2025-3-23 13:21:22 | 只看該作者
,Allgemeiner Kreislauf der Atmosph?re,We present three symbolic—numeric techniques for computing the intersection and self—intersection curve(s) of two Bézier surface patches of bidegree (2,2). In particular, we discuss algorithms, implementation, illustrative examples and provide a comparison of the methods.
12#
發(fā)表于 2025-3-23 15:55:38 | 只看該作者
The GAIA Project on Intersection and ImplicitizationIn the GAIA-project we have combined knowledge from Computer Aided Geometric Design (CAGD), classical algebraic geometry and real symbolic computing to improve intersection algorithms for Computer Aided Design (CAD) systems. The focus has been on
13#
發(fā)表于 2025-3-23 20:29:14 | 只看該作者
14#
發(fā)表于 2025-3-23 22:20:40 | 只看該作者
15#
發(fā)表于 2025-3-24 02:22:59 | 只看該作者
16#
發(fā)表于 2025-3-24 09:24:11 | 只看該作者
17#
發(fā)表于 2025-3-24 11:47:08 | 只看該作者
Bert Jüttler,Ragni PieneBook arising from major European project in geometric modeling.Includes supplementary material:
18#
發(fā)表于 2025-3-24 17:31:34 | 只看該作者
19#
發(fā)表于 2025-3-24 21:01:11 | 只看該作者
Datenbedarf und Logistikcontrolling,onal parameterization, hence is of potential interest in computer aided geometric design. We study properties of monoids in general and of monoid surfaces in particular. The main results include a description of the possible real forms of the singularities on a monoid surface other than the (. ? 1)-
20#
發(fā)表于 2025-3-25 02:51:33 | 只看該作者
https://doi.org/10.1007/978-3-662-11588-6n cyclides but are more flexible as blending surfaces between natural quadrics. The classification of quadratic canal surfaces is given from the point of view of Laguerre geometry. Their properties that are important for geometric modeling are studied: rational parametrizations of minimal degree, Bé
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苏州市| 右玉县| 深泽县| 忻州市| 临海市| 乌拉特后旗| 东兴市| 昭平县| 内黄县| 高淳县| 兴文县| 南通市| 云龙县| 肥东县| 西贡区| 日喀则市| 竹溪县| 斗六市| 原阳县| 台州市| 盐边县| 宿松县| 麻栗坡县| 桂林市| 福建省| 台江县| 河东区| 洛阳市| 四子王旗| 黎平县| 内江市| 台北县| 五寨县| 滨海县| 宜城市| 宜州市| 博野县| 吉林省| 峡江县| 自治县| 岳阳市|