找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods in the Algebraic Theory of Quadratic Forms; Summer School, Lens, Oleg T. Izhboldin,Bruno Kahn,Alexander Vishik,Jean Book

[復(fù)制鏈接]
樓主: 憑票入場
11#
發(fā)表于 2025-3-23 10:56:12 | 只看該作者
12#
發(fā)表于 2025-3-23 17:17:45 | 只看該作者
https://doi.org/10.1007/978-3-8350-5579-7Our main goal is to give proofs of all results announced by Oleg Izhboldin in [13]. In particular, we establish Izhboldin’s criterion for stable equivalence of 9-dimensional forms. Several other related results, some of them due to the author, are also included.
13#
發(fā)表于 2025-3-23 19:11:01 | 只看該作者
14#
發(fā)表于 2025-3-24 01:55:12 | 只看該作者
,Izhboldin’s Results on Stably Birational Equivalence of Quadrics,Our main goal is to give proofs of all results announced by Oleg Izhboldin in [13]. In particular, we establish Izhboldin’s criterion for stable equivalence of 9-dimensional forms. Several other related results, some of them due to the author, are also included.
15#
發(fā)表于 2025-3-24 04:21:18 | 只看該作者
https://doi.org/10.1007/b94827Chow groups; Cohomology; Dimension; Quadratic forms; algebra; motives; unramified cohomology
16#
發(fā)表于 2025-3-24 08:05:18 | 只看該作者
https://doi.org/10.1007/978-3-663-16284-1June 26-28, 2000. However, some extra material is added. I tried to make the material more accessible for the reader. So, complicated technical proofs are presented in a separate section. Applications are discussed in the last two sections. In particular, splitting patterns of quadratic forms of odd
17#
發(fā)表于 2025-3-24 12:12:54 | 只看該作者
18#
發(fā)表于 2025-3-24 16:58:35 | 只看該作者
Dynamik in Struktur und Kultur,ear as he did each year that he competed. Upon entering the university, after some hesitation, Oleg decided to study algebra (if I am not mistaken he was also invited to study mathematical analysis). He began to work in an area that was very fashionable at that time: algebraic K-theory of fields. Wh
19#
發(fā)表于 2025-3-24 22:08:59 | 只看該作者
20#
發(fā)表于 2025-3-25 00:45:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
张家川| 梁河县| 龙门县| 乐亭县| 成都市| 清水河县| 交城县| 方正县| 聊城市| 武隆县| 南宫市| 田林县| 新建县| 社会| 彭山县| 平湖市| 景德镇市| 台安县| 安阳市| 澳门| 宁化县| 新民市| 清丰县| 阿拉尔市| 六安市| 阳山县| 木里| 宣威市| 奉贤区| 通榆县| 康平县| 黄龙县| 南投县| 黎川县| 新民市| 合江县| 册亨县| 烟台市| 铜山县| 玉溪市| 吉林市|