找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods in Physics XXXVIII; Workshop, Bia?owie?a Piotr Kielanowski,Anatol Odzijewicz,Emma Previato Conference proceedings 2020 Th

[復(fù)制鏈接]
樓主: sustained
61#
發(fā)表于 2025-4-1 05:39:33 | 只看該作者
62#
發(fā)表于 2025-4-1 09:42:50 | 只看該作者
Fock Quantization of Canonical Transformations and Semiclassical Asymptotics for Degenerate Problemsal (high-frequency) asymptotic approximation. This role may well pass unnoticed as long as one deals with nondegenerate differential equations. However, the situation is different for some classes of equations with degeneration, where the Fock quantization of canonical transformations becomes instru
63#
發(fā)表于 2025-4-1 11:24:32 | 只看該作者
Some Recent Results on Contact or Point Supported Potentialsfter a simple general presentation in one dimension, we briefly discuss a one dimensional periodic potential with a .-.. interaction at each node. The dependence of energy bands with the parameters (coefficients of the deltas) can be computed numerically. We also study the .-.. interaction supported
64#
發(fā)表于 2025-4-1 15:33:49 | 只看該作者
65#
發(fā)表于 2025-4-1 19:11:15 | 只看該作者
Many-Particle Schr?dinger Type Finitely Factorized Quantum Hamiltonian Systems and Their Integrabilip to the Hamiltonian operators’ factorized structure. We investigate this for completely integrable spinless systems, showing the connection with the classical Bethe ansatz ground state representation. The quantum Hamilton operators are considered for integrable delta-potential and oscillatory Calog
66#
發(fā)表于 2025-4-2 00:31:24 | 只看該作者
67#
發(fā)表于 2025-4-2 03:07:15 | 只看該作者
On the Construction of Non-Hermitian Hamiltonians with All-Real Spectra Through Supersymmetric Algorracterized by a complex-valued potential, both of them with only real eigenvalues in their spectrum. The superpotential that links these systems is complex-valued, parameterized by the solutions of the Ermakov equation, and may be expressed either in nonlinear form or as the logarithmic derivative o
68#
發(fā)表于 2025-4-2 10:49:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
会东县| 永康市| 界首市| 清镇市| 阜新市| 深水埗区| 大足县| 聂荣县| 临潭县| 石狮市| 内丘县| 若尔盖县| 永善县| 项城市| 马鞍山市| 建平县| 纳雍县| 泰来县| 高尔夫| 泰安市| 伊通| 宿迁市| 弥渡县| 怀宁县| 屏山县| 怀来县| 万安县| 泸州市| 明溪县| 阿合奇县| 钟祥市| 格尔木市| 微山县| 井研县| 尼木县| 合作市| 深水埗区| 额尔古纳市| 隆尧县| 临猗县| 东至县|