找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods in Physics XXXVII; Workshop and Summer Piotr Kielanowski,Anatol Odzijewicz,Emma Previato Conference proceedings 2019 Spr

[復制鏈接]
樓主: sprawl
31#
發(fā)表于 2025-3-27 00:12:43 | 只看該作者
32#
發(fā)表于 2025-3-27 04:05:35 | 只看該作者
33#
發(fā)表于 2025-3-27 05:52:13 | 只看該作者
Giovanni Bianchi,Werner Schiehlencal dual to Toeplitz operators which have symbols in an algebra. The mapping from a symbol to its co-Toeplitz operator gives a quantization scheme, called co-Toeplitz quantization. A new, quite simple particular case of co-Toeplitz quantization is introduced in this note. Examples are given in order
34#
發(fā)表于 2025-3-27 11:15:25 | 只看該作者
35#
發(fā)表于 2025-3-27 15:20:15 | 只看該作者
36#
發(fā)表于 2025-3-27 17:52:24 | 只看該作者
Hamiltonian Dynamics for the Kepler Problem in a Deformed Phase Spacetors are constructed and used to compute the integrals of motion. The same investigation is performed with the introduction of the Laplace{ Runge{Lenz vector. The existence of quasi-bi-Hamiltonian structures is also elucidated. Related properties are studied.
37#
發(fā)表于 2025-3-28 01:05:46 | 只看該作者
Notes on integrable motion of two interacting curves and two-layer generalized Heisenberg ferromagnery of curves is established. Using this relation we found the geometrical equivalent counterpart of the two-layer spin system which is the two-component KdV equation. Finally, the gauge equivalence between these equations is established.
38#
發(fā)表于 2025-3-28 04:53:34 | 只看該作者
39#
發(fā)表于 2025-3-28 07:16:27 | 只看該作者
40#
發(fā)表于 2025-3-28 11:25:01 | 只看該作者
Co-Toeplitz Quantization: A Simple Casecal dual to Toeplitz operators which have symbols in an algebra. The mapping from a symbol to its co-Toeplitz operator gives a quantization scheme, called co-Toeplitz quantization. A new, quite simple particular case of co-Toeplitz quantization is introduced in this note. Examples are given in order
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 01:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
靖边县| 旬阳县| 西峡县| 曲沃县| 平凉市| 海南省| 衡南县| 阿荣旗| 焉耆| 泰来县| 蓬溪县| 会昌县| 桐城市| 融水| 长兴县| 方正县| 民乐县| 商水县| 桃园县| 共和县| 新巴尔虎右旗| 桂林市| 皮山县| 宜丰县| 宜君县| 达日县| 浪卡子县| 大丰市| 安阳市| 祁阳县| 瑞丽市| 加查县| 东乌珠穆沁旗| 丹凤县| 北辰区| 罗源县| 枣强县| 丁青县| 临汾市| 九龙城区| 迁西县|