找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods in PDE’s; Giovanna Citti,Maria Manfredini,Francesco Uguzzoni Conference proceedings 2015 Springer International Publishi

[復(fù)制鏈接]
樓主: 添加劑
51#
發(fā)表于 2025-3-30 10:34:32 | 只看該作者
Srinivasan Arjun Tekalur,Arun Shuklaent estimates for non-negative solutions of?(1) in the spirit of a 2005 paper by Yan Yan Li and Louis Nirenberg. The second part of the note focuses on entire solutions of?(1) with semilinear term . satisfying a Keller-Osserman type integrability condition.
52#
發(fā)表于 2025-3-30 12:40:01 | 只看該作者
Conference proceedings 2015heir discipline of research, providing readers an overview of recent progress and future research trends in PDEs. In particular, the volume collects significant results for sub-elliptic equations, potential theory and diffusion equations, with an emphasis on comparing different methodologies and on their implications for theory and applications.?.
53#
發(fā)表于 2025-3-30 16:36:12 | 只看該作者
54#
發(fā)表于 2025-3-30 22:31:26 | 只看該作者
55#
發(fā)表于 2025-3-31 01:54:35 | 只看該作者
A Quantitative Lusin Theorem for Functions in BV,at least one point of .. In this note we follow the proof given in the Appendix of DiBenedetto and Vespri (Arch. Ration. Mech. Anal. ., 247–309, 1995) so we are able to use only a 1-dimensional Poincaré inequality.
56#
發(fā)表于 2025-3-31 06:44:46 | 只看該作者
57#
發(fā)表于 2025-3-31 12:34:42 | 只看該作者
,,-Parabolic Regularity and Non-degenerate Ornstein-Uhlenbeck Type Operators,appearing in such estimates from the parabolicity constant. The proof requires the use of the stochastic integral when . is different from 2. Finally we extend our estimates to parabolic equations involving non-degenerate Ornstein-Uhlenbeck type operators.
58#
發(fā)表于 2025-3-31 16:13:59 | 只看該作者
,A Few Recent Results on Fully Nonlinear PDE’s,ent estimates for non-negative solutions of?(1) in the spirit of a 2005 paper by Yan Yan Li and Louis Nirenberg. The second part of the note focuses on entire solutions of?(1) with semilinear term . satisfying a Keller-Osserman type integrability condition.
59#
發(fā)表于 2025-3-31 18:51:15 | 只看該作者
60#
發(fā)表于 2025-4-1 01:31:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
渭源县| 长岛县| 武隆县| 大姚县| 寻甸| 仪陇县| 广南县| 新余市| 高雄县| 韩城市| 光泽县| 吴旗县| 武山县| 博爱县| 温州市| 嘉义市| 武冈市| 金秀| 遂川县| 新竹县| 乌鲁木齐市| 和平区| 姚安县| 龙泉市| 襄樊市| 酒泉市| 保亭| 建水县| 安化县| 景洪市| 定陶县| 宜川县| 安仁县| 辽源市| 利辛县| 诏安县| 卫辉市| 弋阳县| 全椒县| 隆德县| 宕昌县|