找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods in Inverse Problems and PDE Control; Christopher B. Croke,Michael S. Vogelius,Irena Las Conference proceedings 2004 Spri

[復(fù)制鏈接]
樓主: 黑暗社會
21#
發(fā)表于 2025-3-25 04:22:27 | 只看該作者
22#
發(fā)表于 2025-3-25 11:30:26 | 只看該作者
23#
發(fā)表于 2025-3-25 14:54:47 | 只看該作者
Norman H. Anderson,Margaret A. Armstrongint will be the boundary rigidity and conjugacy rigidity problems. These problems are connected to many other problems (Mostow-Margulis type rigidity, isopectral problems, isoperimetric inequalities etc.). We will restrict our attention to those results that have a direct connection to the boundary
24#
發(fā)表于 2025-3-25 18:35:08 | 只看該作者
25#
發(fā)表于 2025-3-25 21:04:06 | 只看該作者
26#
發(fā)表于 2025-3-26 01:16:23 | 只看該作者
Sayan Ray,Sanjoy Sanyal,Pulak Senguptae inverse problem of determining a metric of a Riemannian manifold (with boundary) from the dynamic Dirichlet-to-Neumann map associated with the wave equation. Although these results are very satisfactory it requires too much information. By just looking at the singularities of the dynamic Dirichlet
27#
發(fā)表于 2025-3-26 06:06:05 | 只看該作者
28#
發(fā)表于 2025-3-26 09:23:44 | 只看該作者
29#
發(fā)表于 2025-3-26 16:39:42 | 只看該作者
les. It is the analogue for exterior domains of the proof that a mirror symmetric bounded simply connected analytic plane domain is determined by its Dirichlet eigenvalues. The proof uses ‘interior/exterior duality’ to simplify the argument.
30#
發(fā)表于 2025-3-26 20:07:26 | 只看該作者
The Case for Differential Geometry in the Control of Single and Coupled PDEs: The Structural Acoustd as follows: we intend to provide a relatively updated survey (subject to space limitations) of results on . and . of certain general classes of single Partial Differential Equations as well as of classes of systems of coupled PDEs (in dimension strictly greater than one), that have become available in recent years ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 02:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
菏泽市| 金溪县| 韩城市| 宣恩县| 榆树市| 仙桃市| 乐业县| 平阳县| 页游| 桂平市| 吉林省| 和平县| 柳林县| 通江县| 新沂市| 赫章县| 武义县| 永福县| 时尚| 靖安县| 应用必备| 沙洋县| 平凉市| 镇平县| 江达县| 博客| 汾西县| 庆元县| 巫溪县| 成安县| 太仆寺旗| 双桥区| 大竹县| 宁河县| 晋城| 乾安县| 通城县| 甘谷县| 乐清市| 乌苏市| 博客|