找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Mechanics on Riemannian Manifolds; Applications to Part Ovidiu Calin,Der-Chen Chang Textbook 2005 Birkh?user Boston 2005 Calculus

[復(fù)制鏈接]
查看: 16296|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:00:48 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometric Mechanics on Riemannian Manifolds
副標(biāo)題Applications to Part
編輯Ovidiu Calin,Der-Chen Chang
視頻videohttp://file.papertrans.cn/384/383537/383537.mp4
概述A geometric approach to problems in physics, many of which cannot be solved by any other methods.Text is enriched with good examples and exercises at the end of every chapter.Fine for a course or semi
叢書名稱Applied and Numerical Harmonic Analysis
圖書封面Titlebook: Geometric Mechanics on Riemannian Manifolds; Applications to Part Ovidiu Calin,Der-Chen Chang Textbook 2005 Birkh?user Boston 2005 Calculus
描述.Differential geometry techniques have very useful and important applications in partial differential equations and quantum mechanics. This work presents a purely geometric treatment of problems in physics involving quantum harmonic oscillators, quartic oscillators, minimal surfaces, and Schr?dinger‘s, Einstein‘s and Newton‘s equations. ..Geometric Mechanics on Riemannian Manifolds. is a fine text for a course or seminar directed at graduate and advanced undergraduate students interested in elliptic and hyperbolic differential equations, differential geometry, calculus of variations, quantum mechanics, and physics. The text is enriched with good examples and exercises at the end of every chapter. It is also an ideal resource for pure and applied mathematicians and theoretical physicists working in these areas..
出版日期Textbook 2005
關(guān)鍵詞Calculus of Variations; Euler–Lagrange equation; Fourier transform; Minimal surface; Potential; different
版次1
doihttps://doi.org/10.1007/b138771
isbn_ebook978-0-8176-4421-5Series ISSN 2296-5009 Series E-ISSN 2296-5017
issn_series 2296-5009
copyrightBirkh?user Boston 2005
The information of publication is updating

書目名稱Geometric Mechanics on Riemannian Manifolds影響因子(影響力)




書目名稱Geometric Mechanics on Riemannian Manifolds影響因子(影響力)學(xué)科排名




書目名稱Geometric Mechanics on Riemannian Manifolds網(wǎng)絡(luò)公開度




書目名稱Geometric Mechanics on Riemannian Manifolds網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Mechanics on Riemannian Manifolds被引頻次




書目名稱Geometric Mechanics on Riemannian Manifolds被引頻次學(xué)科排名




書目名稱Geometric Mechanics on Riemannian Manifolds年度引用




書目名稱Geometric Mechanics on Riemannian Manifolds年度引用學(xué)科排名




書目名稱Geometric Mechanics on Riemannian Manifolds讀者反饋




書目名稱Geometric Mechanics on Riemannian Manifolds讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:24:09 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:50:33 | 只看該作者
Birkh?user Boston 2005
地板
發(fā)表于 2025-3-22 07:19:03 | 只看該作者
5#
發(fā)表于 2025-3-22 10:39:17 | 只看該作者
Textbook 2005nts a purely geometric treatment of problems in physics involving quantum harmonic oscillators, quartic oscillators, minimal surfaces, and Schr?dinger‘s, Einstein‘s and Newton‘s equations. ..Geometric Mechanics on Riemannian Manifolds. is a fine text for a course or seminar directed at graduate and
6#
發(fā)表于 2025-3-22 14:52:20 | 只看該作者
7#
發(fā)表于 2025-3-22 17:23:36 | 只看該作者
Textbook 2005echanics, and physics. The text is enriched with good examples and exercises at the end of every chapter. It is also an ideal resource for pure and applied mathematicians and theoretical physicists working in these areas..
8#
發(fā)表于 2025-3-22 23:09:37 | 只看該作者
9#
發(fā)表于 2025-3-23 04:06:00 | 只看該作者
10#
發(fā)表于 2025-3-23 07:50:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 11:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
克拉玛依市| 炉霍县| 隆德县| 汪清县| 平泉县| 盘锦市| 靖西县| 厦门市| 贡嘎县| 武义县| 威宁| 乐安县| 韩城市| 松原市| 昭觉县| 青浦区| 临沧市| 贺兰县| 商河县| 枞阳县| 泸溪县| 昌都县| 漾濞| 共和县| 合山市| 岳阳市| 青海省| 观塘区| 吉木乃县| 城步| 衢州市| 泰来县| 鄢陵县| 温宿县| 石台县| 汉阴县| 溧水县| 石台县| 茂名市| 郑州市| 玛曲县|