找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Mechanics and Its Applications; Weipeng Hu,Chuan Xiao,Zichen Deng Book 2023 The Editor(s) (if applicable) and The Author(s), und

[復(fù)制鏈接]
樓主: hedonist
11#
發(fā)表于 2025-3-23 13:07:52 | 只看該作者
David Powell,Rosalie Liccardo Paculal ways to formulate dynamic systems: Lagrangian mechanics and Hamiltonian mechanics are reviewed, which is the foundation of the geometric mechanics. Finally, several important concepts associated with the geometric integration are presented.
12#
發(fā)表于 2025-3-23 16:59:25 | 只看該作者
13#
發(fā)表于 2025-3-23 21:56:50 | 只看該作者
14#
發(fā)表于 2025-3-23 22:28:54 | 只看該作者
15#
發(fā)表于 2025-3-24 04:51:50 | 只看該作者
Introduction,l ways to formulate dynamic systems: Lagrangian mechanics and Hamiltonian mechanics are reviewed, which is the foundation of the geometric mechanics. Finally, several important concepts associated with the geometric integration are presented.
16#
發(fā)表于 2025-3-24 06:54:31 | 只看該作者
Cardiac: Coronary CTA in Obese Patientsmulti-symplectic method are illustrated, which provides a new way to investigate the local nonlinear properties and reproduce the local dissipation of the non-conservative infinite-dimensional system.
17#
發(fā)表于 2025-3-24 11:23:59 | 只看該作者
18#
發(fā)表于 2025-3-24 17:45:10 | 只看該作者
Book 2023eometric mechanics. The main content of this book is based on the last 20 years’ jobs of the authors. All physical processes can be formulated as the?Hamiltonian form with the energy conservation law as well as the symplectic?structure if all dissipative effects are ignored. On the one hand, the imp
19#
發(fā)表于 2025-3-24 19:57:18 | 只看該作者
Introduction, St?rmer–Verlet scheme for the mathematical pendulum model as examples, the vitality of geometric mechanics is illustrated. Then, two main mathematical ways to formulate dynamic systems: Lagrangian mechanics and Hamiltonian mechanics are reviewed, which is the foundation of the geometric mechanics.
20#
發(fā)表于 2025-3-24 23:16:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 22:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
方正县| 盈江县| 铁岭县| 潜江市| 富顺县| 云和县| 德兴市| 东安县| 上栗县| 七台河市| 福建省| 芦山县| 北票市| 抚松县| 门头沟区| 长沙县| 蕲春县| 广饶县| 灌阳县| 灵丘县| 武安市| 杂多县| 阳东县| 东山县| 蓝山县| 定州市| 莲花县| 青河县| 正宁县| 乌苏市| 山阴县| 阳曲县| 宁阳县| 宁都县| 高州市| 台中县| 高青县| 合肥市| 吴川市| 武陟县| 来安县|