找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Measure Theory; Herbert Federer,B. Eckmann,B. L. Waerden Book 1996 Springer-Verlag Berlin Heidelberg 1996 Geometric measure theo

[復(fù)制鏈接]
查看: 18221|回復(fù): 39
樓主
發(fā)表于 2025-3-21 17:07:49 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometric Measure Theory
編輯Herbert Federer,B. Eckmann,B. L. Waerden
視頻videohttp://file.papertrans.cn/384/383531/383531.mp4
叢書名稱Classics in Mathematics
圖書封面Titlebook: Geometric Measure Theory;  Herbert Federer,B. Eckmann,B. L. Waerden Book 1996 Springer-Verlag Berlin Heidelberg 1996 Geometric measure theo
描述.From the reviews.: "... Federer‘s timely and beautiful book indeed fills the need for a comprehensive treatise on geometric measure theory, and his detailed exposition leads from the foundations of the theory to the most recent discoveries. ... The author writes with a distinctive style which is both natural and powerfully economical in treating a complicated subject. This book is a major treatise in mathematics and is essential in the working library of the modern analyst.".Bulletin of the London Mathematical Society?.
出版日期Book 1996
關(guān)鍵詞Geometric measure theory; Lebesgue integration; Multiplication; Tensor; calculus; calculus of variations;
版次1
doihttps://doi.org/10.1007/978-3-642-62010-2
isbn_softcover978-3-540-60656-7
isbn_ebook978-3-642-62010-2Series ISSN 1431-0821 Series E-ISSN 2512-5257
issn_series 1431-0821
copyrightSpringer-Verlag Berlin Heidelberg 1996
The information of publication is updating

書目名稱Geometric Measure Theory影響因子(影響力)




書目名稱Geometric Measure Theory影響因子(影響力)學(xué)科排名




書目名稱Geometric Measure Theory網(wǎng)絡(luò)公開(kāi)度




書目名稱Geometric Measure Theory網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Geometric Measure Theory被引頻次




書目名稱Geometric Measure Theory被引頻次學(xué)科排名




書目名稱Geometric Measure Theory年度引用




書目名稱Geometric Measure Theory年度引用學(xué)科排名




書目名稱Geometric Measure Theory讀者反饋




書目名稱Geometric Measure Theory讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:57:12 | 只看該作者
https://doi.org/10.1057/9781137321916ict adherence to the principles of naturality. The reader is assumed to be familiar with the category of vector spaces and linear maps, but no knowledge of multilinear algebra (or determinants) is presupposed. The field of scalars will be the field . of real numbers, except where another field is ex
板凳
發(fā)表于 2025-3-22 02:58:16 | 只看該作者
地板
發(fā)表于 2025-3-22 05:16:52 | 只看該作者
https://doi.org/10.1007/978-3-662-40303-7centers about the tangential and rectifiability properties of sets, and the transformation formulae corresponding to Lipschitizian maps. Exterior algebra plays a useful role here, but the theory of integration of differential forms over oriented sets (which includes the boundary formulae of Gauss, G
5#
發(fā)表于 2025-3-22 10:18:31 | 只看該作者
6#
發(fā)表于 2025-3-22 12:54:13 | 只看該作者
,British Narco-diplomacy, 1909–46,le current . defined in 5.1.1, on the concept of ellipticity defined in 5.1.2, and on the notions of minimizing current defined in 5.1.6. For example, a current S ∈ ..(..) is absolutely Ф minimizing with respect to .. if and only if
7#
發(fā)表于 2025-3-22 17:44:08 | 只看該作者
https://doi.org/10.1007/978-3-642-62010-2Geometric measure theory; Lebesgue integration; Multiplication; Tensor; calculus; calculus of variations;
8#
發(fā)表于 2025-3-22 21:58:46 | 只看該作者
9#
發(fā)表于 2025-3-23 02:25:06 | 只看該作者
10#
發(fā)表于 2025-3-23 06:51:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
延寿县| 广元市| 台州市| 林芝县| 克拉玛依市| 渭南市| 白玉县| 东莞市| 辽宁省| 阜平县| 嵩明县| 兴国县| 福贡县| 内乡县| 石景山区| 大姚县| 灌南县| 金平| 闵行区| 凯里市| 克什克腾旗| 泾源县| 故城县| 上栗县| 金阳县| 潞城市| 阜阳市| 兴宁市| 紫云| 沧州市| 六安市| 房山区| 乌拉特后旗| 昌图县| 兴国县| 灌云县| 鄂托克前旗| 枝江市| 汝阳县| 峨眉山市| 彩票|