找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Invariant Theory for Polarized Curves; Gilberto Bini,Fabio Felici,Filippo Viviani Book 2014 Springer International Publishing Sw

[復制鏈接]
樓主: 閃爍
41#
發(fā)表于 2025-3-28 15:13:10 | 只看該作者
https://doi.org/10.1007/978-3-319-11337-114L24,14H40,14C05,14H10,14D23,14B05; ; Compactified Jacobians; Geometric invariant theory; Hilbert and C
42#
發(fā)表于 2025-3-28 19:26:45 | 只看該作者
43#
發(fā)表于 2025-3-29 02:54:35 | 只看該作者
44#
發(fā)表于 2025-3-29 05:49:37 | 只看該作者
Introduction,y Mumford and his co-authors (see [MFK94]), was the construction of the moduli space .. of smooth curves of genus .?≥?2 and its compactification . via . (i.e. connected nodal projective curves with finite automorphism group), carried out by Mumford [Mum77] and Gieseker [Gie82].
45#
發(fā)表于 2025-3-29 09:20:40 | 只看該作者
46#
發(fā)表于 2025-3-29 11:46:14 | 只看該作者
Appendix: Positivity Properties of Balanced Line Bundles,The results obtained here are applied in this manuscript only for quasi-wp-stable curves; however we decided to present these results in the Gorenstein case for two reasons: firstly, we think that these results are interesting in their own (in particular we will generalize our proofs extend without
47#
發(fā)表于 2025-3-29 18:13:25 | 只看該作者
0075-8434 w semistable locus. As an application, we obtain three compactications of the universal Jacobian over the moduli space of stable curves, weakly-pseudo-stable curves and pseudo-stable curves, respectively..978-3-319-11336-4978-3-319-11337-1Series ISSN 0075-8434 Series E-ISSN 1617-9692
48#
發(fā)表于 2025-3-29 21:21:30 | 只看該作者
Book 2014 values a=3.5 and a=4, where the Hilbert semistable locus is strictly smaller than the Chow semistable locus. As an application, we obtain three compactications of the universal Jacobian over the moduli space of stable curves, weakly-pseudo-stable curves and pseudo-stable curves, respectively..
49#
發(fā)表于 2025-3-30 01:57:22 | 只看該作者
50#
發(fā)表于 2025-3-30 07:45:42 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 21:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
三亚市| 江川县| 麻栗坡县| 枞阳县| 佛冈县| 吴忠市| 鄱阳县| 平塘县| 洪湖市| 普安县| 安塞县| 桐梓县| 台中市| 昌吉市| 拉萨市| 五河县| 伊宁县| 韶关市| 武鸣县| 嘉义市| 开平市| 杭州市| 井冈山市| 嘉定区| 尤溪县| 高安市| 大洼县| 彰化市| 滕州市| 弥渡县| 云阳县| 正定县| 东丰县| 桓仁| 安化县| 炉霍县| 新宁县| 汝城县| 福鼎市| 且末县| 桑植县|