找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Harmonic Analysis II; Function Spaces Meas Dorina Mitrea,Irina Mitrea,Marius Mitrea Book 2022 The Editor(s) (if applicable) and T

[復(fù)制鏈接]
樓主: 存貨清單
21#
發(fā)表于 2025-3-25 03:57:09 | 只看該作者
22#
發(fā)表于 2025-3-25 10:05:04 | 只看該作者
Diagnosis of Allergic Reactions to Drugs, the structural richness of the Euclidean space. This is in line with efforts made in the direction of extending the standard theory of Besov and Triebel-Lizorkin spaces to the geometric measure theoretic context of spaces of homogeneous type; see, e.g., [90],?[86],?[91],?[92],?[203],?[89],?[152],?and [206].
23#
發(fā)表于 2025-3-25 12:58:01 | 只看該作者
24#
發(fā)表于 2025-3-25 16:37:25 | 只看該作者
Banach Function Spaces, Extrapolation, and Orlicz Spaces,imal operator happens to be bounded. Finally, in §. we focus on Orlicz spaces which, in particular, are natural examples of classical Banach function spaces for which the machinery developed so far applies.
25#
發(fā)表于 2025-3-25 21:20:05 | 只看該作者
26#
發(fā)表于 2025-3-26 02:12:08 | 只看該作者
Luís Pereira Justo,Helena Maria Calilplicable to more general topological vector spaces (which are not necessarily locally convex). In §. we recall some basic results to this effect, obtained via a “dual-less” approach to Fredholm theory. Ultimately, this shows that the core principle of the theory, namely that . is pervasive.
27#
發(fā)表于 2025-3-26 06:10:28 | 只看該作者
28#
發(fā)表于 2025-3-26 10:14:28 | 只看該作者
Prachi Suman,Anupama Paul,Awanish Mishraspaces (of order one) in the Euclidean setting, based on ordinary weak derivatives. Such a compatibility reinforces the idea that this is indeed a natural generalization of the standard scale of Sobolev spaces from the (entire) Euclidean ambient to sets exhibiting a much more intricate geometry (bot
29#
發(fā)表于 2025-3-26 16:37:23 | 只看該作者
30#
發(fā)表于 2025-3-26 16:57:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 20:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
澄迈县| 祥云县| 六枝特区| 北辰区| 博爱县| 西充县| 大连市| 建昌县| 贡嘎县| 永城市| 夏邑县| 盐山县| 祁连县| 三河市| 双流县| 阜阳市| 岱山县| 沁水县| 黔西县| 当阳市| 奈曼旗| 万山特区| 苍南县| 新源县| 会宁县| 益阳市| 连山| 林口县| 那曲县| 杭州市| 栖霞市| 昌宁县| 南安市| 高安市| 白银市| 阿坝| 苏尼特左旗| 灵丘县| 肇庆市| 麦盖提县| 济南市|