找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Group Theory; Geneva and Barcelona Goulnara N. Arzhantseva,José Burillo,Enric Ventura Conference proceedings 2007 Birkh?user Base

[復(fù)制鏈接]
樓主: Malevolent
41#
發(fā)表于 2025-3-28 18:19:48 | 只看該作者
42#
發(fā)表于 2025-3-28 18:53:55 | 只看該作者
Futurology and Future Prospect of Drone CPS,tly being written. It is based on notes TEX’d by Peter Kropholler. I thank Peter for making his notes available to me. Of course, he shouldn’t be held responsible for the content. Thanks also to the organizers of the Barcelona Conference on Geometric Group Theory, and to the referee for helpful suggestions.
43#
發(fā)表于 2025-3-29 01:56:58 | 只看該作者
44#
發(fā)表于 2025-3-29 06:48:32 | 只看該作者
,Computational Explorations in Thompson’s Group , ,ect to its standard finite generating set, designed to address the subtle and difficult question whether or not Thompson’s group is amenable. We also describe experiments to estimate the exponential growth rate of . and the rate of escape of symmetric random walks with respect to the standard generating set.
45#
發(fā)表于 2025-3-29 09:19:12 | 只看該作者
A General Construction of JSJ Decompositions,tly being written. It is based on notes TEX’d by Peter Kropholler. I thank Peter for making his notes available to me. Of course, he shouldn’t be held responsible for the content. Thanks also to the organizers of the Barcelona Conference on Geometric Group Theory, and to the referee for helpful suggestions.
46#
發(fā)表于 2025-3-29 12:04:13 | 只看該作者
Limit Groups of Equationally Noetherian Groups,operties of limit groups of a free group or, more generally, of a torsion-free hyperbolic group can be seen as consequences of the fact that such groups are equationally noetherian. Especially, such properties are still true for linear groups and finitely generated abelian-by-nilpotent groups.
47#
發(fā)表于 2025-3-29 18:30:29 | 只看該作者
https://doi.org/10.1007/978-3-7643-8412-8Geometric group theory; Group theory; classifying space; conjugacy problem; free group; membership proble
48#
發(fā)表于 2025-3-29 20:44:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 05:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和静县| 城市| 湟源县| 六盘水市| 大足县| 淅川县| 安丘市| 上蔡县| 怀宁县| 和田县| 河池市| 齐齐哈尔市| 云南省| 宁阳县| 莒南县| 隆德县| 保亭| 高唐县| 胶南市| 长武县| 株洲市| 镇宁| 广灵县| 丹巴县| 长春市| 江门市| 丰宁| 霍州市| 都匀市| 酒泉市| 桓仁| 土默特左旗| 砚山县| 中宁县| 石棉县| 应城市| 马龙县| 远安县| 石棉县| 上犹县| 舒城县|