找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Dynamics; Constantin Udri?te Book 2000 Kluwer Academic Publishers 2000 dynamics.geometry.manifold.mathematics.mechanics

[復(fù)制鏈接]
查看: 45628|回復(fù): 46
樓主
發(fā)表于 2025-3-21 19:52:39 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Geometric Dynamics
編輯Constantin Udri?te
視頻videohttp://file.papertrans.cn/384/383506/383506.mp4
叢書(shū)名稱Mathematics and Its Applications
圖書(shū)封面Titlebook: Geometric Dynamics;  Constantin Udri?te Book 2000 Kluwer Academic Publishers 2000 dynamics.geometry.manifold.mathematics.mechanics
描述Geometric dynamics is a tool for developing a mathematical representation of real world phenomena, based on the notion of a field line described in two ways: -as the solution of any Cauchy problem associated to a first-order autonomous differential system; -as the solution of a certain Cauchy problem associated to a second-order conservative prolongation of the initial system. The basic novelty of our book is the discovery that a field line is a geodesic of a suitable geometrical structure on a given space (Lorentz-Udri~te world-force law). In other words, we create a wider class of Riemann-Jacobi, Riemann-Jacobi-Lagrange, or Finsler-Jacobi manifolds, ensuring that all trajectories of a given vector field are geodesics. This is our contribution to an old open problem studied by H. Poincare, S. Sasaki and others. From the kinematic viewpoint of corpuscular intuition, a field line shows the trajectory followed by a particle at a point of the definition domain of a vector field, if the particle is sensitive to the related type of field. Therefore, field lines appear in a natural way in problems of theoretical mechanics, fluid mechanics, physics, thermodynamics, biology, chemistry, etc
出版日期Book 2000
關(guān)鍵詞dynamics; geometry; manifold; mathematics; mechanics
版次1
doihttps://doi.org/10.1007/978-94-011-4187-1
isbn_softcover978-94-010-5822-3
isbn_ebook978-94-011-4187-1
copyrightKluwer Academic Publishers 2000
The information of publication is updating

書(shū)目名稱Geometric Dynamics影響因子(影響力)




書(shū)目名稱Geometric Dynamics影響因子(影響力)學(xué)科排名




書(shū)目名稱Geometric Dynamics網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Geometric Dynamics網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Geometric Dynamics被引頻次




書(shū)目名稱Geometric Dynamics被引頻次學(xué)科排名




書(shū)目名稱Geometric Dynamics年度引用




書(shū)目名稱Geometric Dynamics年度引用學(xué)科排名




書(shū)目名稱Geometric Dynamics讀者反饋




書(shū)目名稱Geometric Dynamics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:27:46 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:04:45 | 只看該作者
Potential Differential Systems of Order One and Catastrophe Theory,calar field ?, and curves of maximal local increase off. If the potential ? is a subharmonic (respectively harmonic or supraharmonic) fuction, i.e., Δf≥ 0 (respectively Δf = 0 or Δ?≤ 0), then the flow generated by grad f increases (respectively preserves or decreases) the volume (see 5.1).
地板
發(fā)表于 2025-3-22 05:46:30 | 只看該作者
5#
發(fā)表于 2025-3-22 10:25:01 | 只看該作者
6#
發(fā)表于 2025-3-22 15:11:21 | 只看該作者
7#
發(fā)表于 2025-3-22 18:58:35 | 只看該作者
Book 2000e trajectory followed by a particle at a point of the definition domain of a vector field, if the particle is sensitive to the related type of field. Therefore, field lines appear in a natural way in problems of theoretical mechanics, fluid mechanics, physics, thermodynamics, biology, chemistry, etc
8#
發(fā)表于 2025-3-22 22:35:29 | 只看該作者
e shows the trajectory followed by a particle at a point of the definition domain of a vector field, if the particle is sensitive to the related type of field. Therefore, field lines appear in a natural way in problems of theoretical mechanics, fluid mechanics, physics, thermodynamics, biology, chemistry, etc978-94-010-5822-3978-94-011-4187-1
9#
發(fā)表于 2025-3-23 02:38:55 | 只看該作者
https://doi.org/10.1007/978-1-349-19886-3are self-distributed as tangent vectors to curves. The parallel, torse forming, Newtonian, electrostatic, etc vector fields serve as examples for finding analytic expressions of the field lines (see 3.1, 3.2).
10#
發(fā)表于 2025-3-23 07:10:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 00:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镇坪县| 盐津县| 汶川县| 南陵县| 博乐市| 酒泉市| 土默特右旗| 富阳市| 黑山县| 南溪县| 商水县| 临汾市| 两当县| 湄潭县| 宜君县| 廉江市| 馆陶县| 黄冈市| 神池县| 崇左市| 新竹县| 蓬莱市| 昂仁县| 五大连池市| 汤阴县| 神木县| 铁力市| 鹤壁市| 利辛县| 浠水县| 望城县| 武宁县| 临澧县| 随州市| 郯城县| 黄梅县| 潜山县| 都匀市| 阜康市| 丰都县| 藁城市|