找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Constraint Solving and Applications; Beat Brüderlin,Dieter Roller Book 1998 Springer-Verlag Berlin Heidelberg 1998 3D.3D graphic

[復(fù)制鏈接]
樓主: obesity
31#
發(fā)表于 2025-3-26 22:20:10 | 只看該作者
32#
發(fā)表于 2025-3-27 04:57:30 | 只看該作者
Development Aid and Ripeness in Context,We describe a new approach for geometric shape design which his centered around a 2D and 3D geometric constraint solver. This approach enables so-called non-history based modeling providing more flexibility to the designer. The modeler combines geometric and topological constraints, direct manipulation, sketching and Boolean set operations.
33#
發(fā)表于 2025-3-27 06:47:17 | 只看該作者
Results and hypotheses assessment,We have developed a formalism to simplify the expression of 3D constraints and their solving. Our formalism makes a strong distinction between metric and projective properties. We represent points, lines and planes in projective space by tensors and use Cayley’s algebra, with the . and . operators, to express projective properties.
34#
發(fā)表于 2025-3-27 10:56:19 | 只看該作者
https://doi.org/10.1007/978-1-349-05541-8Curves and surfaces designed in a computer graphics environment have many applications, including the design of cars, airplanes, shipbodies and modelling robots. These free-form objects are an essential part of powerful CAD-systems.
35#
發(fā)表于 2025-3-27 17:30:57 | 只看該作者
36#
發(fā)表于 2025-3-27 19:30:05 | 只看該作者
37#
發(fā)表于 2025-3-27 22:51:20 | 只看該作者
Desargues: A Constraint-based System for 3D Projective GeometryWe have developed a formalism to simplify the expression of 3D constraints and their solving. Our formalism makes a strong distinction between metric and projective properties. We represent points, lines and planes in projective space by tensors and use Cayley’s algebra, with the . and . operators, to express projective properties.
38#
發(fā)表于 2025-3-28 03:51:23 | 只看該作者
39#
發(fā)表于 2025-3-28 09:58:14 | 只看該作者
40#
發(fā)表于 2025-3-28 13:41:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 09:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
仙桃市| 通城县| 泸溪县| 兖州市| 台东县| 四会市| 中卫市| 星座| 靖州| 东平县| 唐河县| 门头沟区| 望城县| 莒南县| 万宁市| 礼泉县| 安达市| 浮山县| 偏关县| 湘潭市| 奉贤区| 扬中市| 罗平县| 庄河市| 邹城市| 鸡东县| 蓬安县| 运城市| 西乌珠穆沁旗| 文昌市| 江津市| 鸡泽县| 民丰县| 清水河县| 安庆市| 秦皇岛市| 疏附县| 霍山县| 仁寿县| 平湖市| 巴南区|