找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Configurations of Singularities of Planar Polynomial Differential Systems; A Global Classificat Joan C. Artés,Jaume Llibre,Nicola

[復(fù)制鏈接]
樓主: Withdrawal
21#
發(fā)表于 2025-3-25 04:06:44 | 只看該作者
22#
發(fā)表于 2025-3-25 07:33:28 | 只看該作者
Quadratic systems with definite singularities of total multiplicity threeAccording to Proposition 5.1, for a quadratic system to have finite singularities of total multiplicity three (i.e. .. = 3), the conditions .. = 0 and .. ≠ 0 must be satisfied. Then by Theorem 6.4 the following lemma is valid.
23#
發(fā)表于 2025-3-25 14:43:18 | 只看該作者
Quadratic systems with finite singularities of total multiplicity fourConsider real the quadratic systems (8.1). According to Proposition 5.1 for a quadratic system (8.1) to have finite singularities of total multiplicity four (i.e. .. = 4), the condition .. ≠ 0 must be satisfied. Therefore according to Theorem 6.4 the following lemma is valid.
24#
發(fā)表于 2025-3-25 19:05:19 | 只看該作者
25#
發(fā)表于 2025-3-25 23:44:27 | 只看該作者
26#
發(fā)表于 2025-3-26 01:20:01 | 只看該作者
27#
發(fā)表于 2025-3-26 07:54:45 | 只看該作者
28#
發(fā)表于 2025-3-26 09:38:56 | 只看該作者
29#
發(fā)表于 2025-3-26 15:50:44 | 只看該作者
Part 1: Introduction and General Principles, the publication of this book (see [41, 29, 338, 301, 26, 32]). Roughly speaking these results give us global information about the possibilities for the number and multiplicity of finite singularities (see [41, 29]), the canonical forms for these possibilities, the weak singularities that may occur
30#
發(fā)表于 2025-3-26 17:31:43 | 只看該作者
Book 2021cient and less time-consuming..Given its scope, the book will appeal to specialists on polynomial differential systems, pure and applied mathematicians who need to study bifurcation diagrams of families of such systems, Ph.D. students, and postdoctoral fellows..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 18:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泰顺县| 改则县| 衡阳县| 光泽县| 东兰县| 隆昌县| 正阳县| 饶河县| 浙江省| 建平县| 遂昌县| 积石山| 镶黄旗| 克拉玛依市| 荣昌县| 海伦市| 府谷县| 太康县| 西乡县| 台北县| 长乐市| 济南市| 班戈县| 云林县| 长海县| 渭南市| 蛟河市| 临武县| 石楼县| 镇平县| 清水县| 宽甸| 托克托县| 江北区| 泸西县| 成安县| 柳林县| 公主岭市| 肥乡县| 板桥市| 九龙城区|