找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Aspects of the Einstein Equations and Integrable Systems; Proceedings of the S R. Martini Conference proceedings 1985 Springer-Ve

[復(fù)制鏈接]
樓主: CLAST
11#
發(fā)表于 2025-3-23 13:34:21 | 只看該作者
12#
發(fā)表于 2025-3-23 16:43:13 | 只看該作者
13#
發(fā)表于 2025-3-23 18:40:05 | 只看該作者
14#
發(fā)表于 2025-3-24 00:33:24 | 只看該作者
https://doi.org/10.1007/978-3-030-55728-7on system with a matrix real semi-simple Lie algebra g possesses its own geometry of n-dim. submanifolds of g. Various applications of this approach are discussed. A particular attention is paid to integrable classical string models.
15#
發(fā)表于 2025-3-24 04:48:05 | 只看該作者
Superposition of solutions in general relativity, and an approximate solution is a new exact solution. Superposition theorems are obtained for the vacuum Einstein equations with and without cosmological constant, the coupled Einstein-Maxwell equations, and the Einstein equations for a perfect fluid.
16#
發(fā)表于 2025-3-24 09:49:53 | 只看該作者
17#
發(fā)表于 2025-3-24 11:04:59 | 只看該作者
Surviving on the Margins of Society in China and an approximate solution is a new exact solution. Superposition theorems are obtained for the vacuum Einstein equations with and without cosmological constant, the coupled Einstein-Maxwell equations, and the Einstein equations for a perfect fluid.
18#
發(fā)表于 2025-3-24 18:19:26 | 只看該作者
https://doi.org/10.1007/978-3-030-55728-7on system with a matrix real semi-simple Lie algebra g possesses its own geometry of n-dim. submanifolds of g. Various applications of this approach are discussed. A particular attention is paid to integrable classical string models.
19#
發(fā)表于 2025-3-24 23:01:31 | 只看該作者
20#
發(fā)表于 2025-3-25 01:57:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 02:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁晋县| 肇庆市| 延寿县| 乳山市| 仙居县| 芦山县| 柘荣县| 吴桥县| 阿鲁科尔沁旗| 肇庆市| 离岛区| 交城县| 图木舒克市| 卓资县| 遵化市| 临沂市| 镇远县| 宜丰县| 门头沟区| 彝良县| 元江| 长兴县| 容城县| 邹城市| 五台县| 大邑县| 科尔| 康平县| 马鞍山市| 泸水县| 闽清县| 盘山县| 泗阳县| 从化市| 大竹县| 宜阳县| 宜都市| 万州区| 于田县| 河北省| 青阳县|