找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar (GAFA Bo‘a(chǎn)z Klartag,Emanuel Milman Book 2017 Springer International Publishing AG

[復(fù)制鏈接]
樓主: 延展
41#
發(fā)表于 2025-3-28 16:28:15 | 只看該作者
On Multiplier Processes Under Weak Moment Assumptions,We show that if . satisfies a certain symmetry condition that is closely related to unconditionality, and if . is an isotropic random vector for which . for every .?∈?.. and every ., then the suprema of the corresponding empirical and multiplier processes indexed by . behave as if . were .-subgaussian.
42#
發(fā)表于 2025-3-28 20:09:18 | 只看該作者
43#
發(fā)表于 2025-3-29 02:51:41 | 只看該作者
44#
發(fā)表于 2025-3-29 06:11:10 | 只看該作者
Thomas Richardson,Andy J. Wellingsix . obtained by randomly sampling .?=?.(. ??log.. ??log.) rows from an . × . Fourier matrix satisfies the restricted isometry property of order . with a fixed . with high probability. This improves on Rudelson and Vershynin (Comm Pure Appl Math, 2008), its subsequent improvements, and Bourgain (GAF
45#
發(fā)表于 2025-3-29 08:22:35 | 只看該作者
46#
發(fā)表于 2025-3-29 13:32:22 | 只看該作者
47#
發(fā)表于 2025-3-29 17:30:25 | 只看該作者
Statistical Inventory Managementaussian mean-curvature inequality and a Gaussian iso-second-variation inequality. The new inequality is nothing but an infinitesimal equivalent form of Ehrhard’s inequality for the Gaussian measure. While Ehrhard’s inequality does not extend to general .(1,?.) measures, we formulate a sufficient con
48#
發(fā)表于 2025-3-29 21:47:29 | 只看該作者
Adina Chiril?,Marin Marin,Andreas ?chsnern-degeneracy and a weak continuity assumption on . that . may be chosen to be 0, i.e. that . satisfies the chain rule operator equation, the solutions of which are explicitly known. We also determine the solutions of one-sided chain rule inequalities like . under a further localization assumption. T
49#
發(fā)表于 2025-3-30 01:31:46 | 只看該作者
50#
發(fā)表于 2025-3-30 06:25:50 | 只看該作者
978-3-319-45281-4Springer International Publishing AG 2017
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盐边县| 德钦县| 咸宁市| 玉田县| 东至县| 娄底市| 多伦县| 林口县| 镇赉县| 枣强县| 塔城市| 清徐县| 贺兰县| 监利县| 广河县| 肇东市| 庆云县| 民丰县| 兴文县| 南城县| 大同市| 绥阳县| 咸宁市| 山西省| 都兰县| 安龙县| 莎车县| 江津市| 三亚市| 潮安县| 凤山县| 丹阳市| 文水县| 子长县| 梁山县| 沅陵县| 洱源县| 博乐市| 绥棱县| 龙山县| 玉龙|