找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar (GAFA Bo‘a(chǎn)z Klartag,Emanuel Milman Book 2020 Springer Nature Switzerland AG 2020 A

[復(fù)制鏈接]
樓主: 輕舟
31#
發(fā)表于 2025-3-26 21:30:26 | 只看該作者
Moments of the Distance Between Independent Random Vectors,We derive various sharp bounds on moments of the distance between two independent random vectors taking values in a Banach space.
32#
發(fā)表于 2025-3-27 03:41:48 | 只看該作者
33#
發(fā)表于 2025-3-27 07:28:44 | 只看該作者
34#
發(fā)表于 2025-3-27 09:54:12 | 只看該作者
Polylog Dimensional Subspaces of ,,We show that a subspace of . of dimension . contains 2-isomorphic copies of . where . tends to infinity with . .. More precisely, for every .?>?0, we show that any subspace of . of dimension . contains a subspace of dimension . of distance at most 1?+?. from ..
35#
發(fā)表于 2025-3-27 14:51:02 | 只看該作者
On a Formula for the Volume of Polytopes,We carry out an elementary proof of a formula for the volume of polytopes, due to A. Esterov, from which it follows that the mixed volume of polytopes depends only on the product of their support functions.
36#
發(fā)表于 2025-3-27 19:58:45 | 只看該作者
Besonderheiten beim Kauf aus der Insolvenztion is close to a Gaussian, with the quantitative difference determined asymptotically by the Cheeger/Poincare/KLS constant. Here we propose a generalized CLT for marginals along random directions drawn from any isotropic log-concave distribution; namely, for ., . drawn independently from isotropic
37#
發(fā)表于 2025-3-28 00:12:58 | 只看該作者
38#
發(fā)表于 2025-3-28 02:47:57 | 只看該作者
Understanding XML Web Services,uncorrelated coordinates. Our bounds are exact up to multiplicative universal constants in the unconditional case for all . and in the isotropic case for .?≤?.???... We also derive two-sided estimates for expectations of sums of . largest moduli of coordinates for some classes of random vectors.
39#
發(fā)表于 2025-3-28 08:09:06 | 只看該作者
Asynchronous Distributed CheckpointingBobkov and Chistyakov (IEEE Trans Inform Theory 61(2):708–714, 2015) fails when the Rényi parameter .?∈?(0, 1), we show that random vectors with .-concave densities do satisfy such a Rényi entropy power inequality. Along the way, we establish the convergence in the Central Limit Theorem for Rényi en
40#
發(fā)表于 2025-3-28 13:19:56 | 只看該作者
Graph Theory and?Attitude Representations satisfies the small ball probability estimate . where .?>?0 may only depend on the sub-Gaussian moment. Although the estimate can be obtained as a combination of known results and techniques, it was not noticed in the literature before. As a key step of the proof, we apply estimates for the singula
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 11:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉安县| 太康县| 连云港市| 南通市| 乡宁县| 高邮市| 鱼台县| 阿拉善左旗| 金湖县| 山丹县| 涟源市| 陈巴尔虎旗| 台中市| 谢通门县| 宁都县| 正蓝旗| 浮梁县| 红河县| 新营市| 嘉善县| 汝阳县| 潮州市| 韶关市| 尼勒克县| 信阳市| 增城市| 海口市| 雅江县| 波密县| 浪卡子县| 卢龙县| 繁峙县| 忻州市| 沁源县| 锡林浩特市| 湖南省| 南召县| 韶关市| 富阳市| 孙吴县| 龙江县|