找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar (GAFA Ronen Eldan,Bo‘a(chǎn)z Klartag,Emanuel Milman Book 2023 The Editor(s) (if applica

[復(fù)制鏈接]
樓主: 預(yù)兆前
41#
發(fā)表于 2025-3-28 15:04:10 | 只看該作者
42#
發(fā)表于 2025-3-28 20:11:22 | 只看該作者
43#
發(fā)表于 2025-3-29 01:45:50 | 只看該作者
https://doi.org/10.1057/9781403934314The works of Bennett, Carbery, Christ, Tao and of Valdimarsson have clarified when equality holds in the Brascamp-Lieb inequality. Here we characterize the case of equality in the Geometric case of Barthe’s reverse Brascamp-Lieb inequality.
44#
發(fā)表于 2025-3-29 03:49:10 | 只看該作者
45#
發(fā)表于 2025-3-29 07:56:37 | 只看該作者
46#
發(fā)表于 2025-3-29 14:08:58 | 只看該作者
47#
發(fā)表于 2025-3-29 17:40:36 | 只看該作者
Poverty and Slowness of Voluntary Movement,The aim of this note is to show that the local form of the logarithmic Brunn-Minkowski conjecture holds for zonoids. The proof uses a variant of the Bochner method due to Shenfeld and the author.
48#
發(fā)表于 2025-3-29 19:48:14 | 只看該作者
On the Gaussian Surface Area of Spectrahedra,We show that for sufficiently large . and . for some universal constant ., a random spectrahedron with matrices drawn from Gaussian orthogonal ensemble has Gaussian surface area . with high probability.
49#
發(fā)表于 2025-3-30 01:41:42 | 只看該作者
,The Case of Equality in Geometric Instances of Barthe’s Reverse Brascamp-Lieb Inequality,The works of Bennett, Carbery, Christ, Tao and of Valdimarsson have clarified when equality holds in the Brascamp-Lieb inequality. Here we characterize the case of equality in the Geometric case of Barthe’s reverse Brascamp-Lieb inequality.
50#
發(fā)表于 2025-3-30 08:08:28 | 只看該作者
The Entropic Barrier Is ,-Self-Concordant,For any convex body ., S. Bubeck and R. Eldan introduced the entropic barrier on . and showed that it is a .-self-concordant barrier. In this note, we observe that the optimal bound of . on the self-concordance parameter holds as a consequence of the dimensional Brascamp–Lieb inequality.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
呼和浩特市| 万全县| 咸宁市| 乐至县| 徐汇区| 宣武区| 鹤峰县| 五华县| 黄大仙区| 彰化县| 清河县| 渝北区| 长子县| 金溪县| 左云县| 东莞市| 磴口县| 霍邱县| 石渠县| 泽普县| 广宗县| 宁明县| 太保市| 兰州市| 晋城| 广河县| 中超| 芜湖县| 金门县| 濮阳县| 佛教| 隆尧县| 黔西| 南投市| 江口县| 罗平县| 郁南县| 全椒县| 建宁县| 岳西县| 灵寿县|