找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Algorithms and Combinatorial Optimization; Martin Gr?tschel,László Lovász,Alexander Schrijver Book 1993Latest edition Springer-V

[復制鏈接]
樓主: Ensign
11#
發(fā)表于 2025-3-23 09:58:14 | 只看該作者
12#
發(fā)表于 2025-3-23 15:30:38 | 只看該作者
https://doi.org/10.1007/978-3-322-82354-0 of the polytopes associated with these problems. We indicate how these results can be employed to derive polynomial time algorithms based on the ellipsoid method and basis reduction. The results of this chapter are presented in a condensed form, to cover as much material as possible.
13#
發(fā)表于 2025-3-23 21:04:39 | 只看該作者
Complexity, Oracles, and Numerical Computation,rk in which algorithms are designed and analysed in this book. We intend to stay on a more or less informal level; nevertheless, all notions introduced here can be made completely precise — see for instance ., . and . (1974), . and . (1979).
14#
發(fā)表于 2025-3-24 01:44:46 | 只看該作者
15#
發(fā)表于 2025-3-24 03:25:25 | 只看該作者
Combinatorial Optimization: Some Basic Examples,tion problems are formulated as linear programs. Chapter 8 contains a comprehensive survey of combinatorial problems to which these methods apply. Finally, in the last two chapters we discuss some more advanced examples in greater detail.
16#
發(fā)表于 2025-3-24 08:07:32 | 只看該作者
17#
發(fā)表于 2025-3-24 13:08:01 | 只看該作者
Geometric Algorithms and Combinatorial Optimization
18#
發(fā)表于 2025-3-24 17:21:29 | 只看該作者
Martin Gr?tschel,László Lovász,Alexander Schrijver
19#
發(fā)表于 2025-3-24 19:07:36 | 只看該作者
Stable Sets in Graphs, classes of graphs which are in fact characterized by such a condition, most notably the class of perfect graphs. Using this approach, we shall develop a polynomial time algorithm for the stable set problem for perfect graphs. So far no purely combinatorial algorithm has been found to solve this pro
20#
發(fā)表于 2025-3-24 23:27:34 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 14:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
永德县| 黎城县| 昔阳县| 霍林郭勒市| 大足县| 象州县| 陆丰市| 平远县| 卓资县| 明水县| 酒泉市| 长治市| 闸北区| 喀喇| 昌吉市| 图片| 泸定县| 义马市| 清苑县| 资阳市| 敦化市| 临猗县| 平利县| 上高县| 哈巴河县| 泾川县| 赤城县| 扎囊县| 闵行区| 泰和县| 阳原县| 泉州市| 中卫市| 六安市| 改则县| 文山县| 墨竹工卡县| 游戏| 分宜县| 岑巩县| 都兰县|