找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Algorithms and Combinatorial Optimization; Martin Gr?tschel,László Lovász,Alexander Schrijver Book 1993Latest edition Springer-V

[復(fù)制鏈接]
樓主: Ensign
11#
發(fā)表于 2025-3-23 09:58:14 | 只看該作者
12#
發(fā)表于 2025-3-23 15:30:38 | 只看該作者
https://doi.org/10.1007/978-3-322-82354-0 of the polytopes associated with these problems. We indicate how these results can be employed to derive polynomial time algorithms based on the ellipsoid method and basis reduction. The results of this chapter are presented in a condensed form, to cover as much material as possible.
13#
發(fā)表于 2025-3-23 21:04:39 | 只看該作者
Complexity, Oracles, and Numerical Computation,rk in which algorithms are designed and analysed in this book. We intend to stay on a more or less informal level; nevertheless, all notions introduced here can be made completely precise — see for instance ., . and . (1974), . and . (1979).
14#
發(fā)表于 2025-3-24 01:44:46 | 只看該作者
15#
發(fā)表于 2025-3-24 03:25:25 | 只看該作者
Combinatorial Optimization: Some Basic Examples,tion problems are formulated as linear programs. Chapter 8 contains a comprehensive survey of combinatorial problems to which these methods apply. Finally, in the last two chapters we discuss some more advanced examples in greater detail.
16#
發(fā)表于 2025-3-24 08:07:32 | 只看該作者
17#
發(fā)表于 2025-3-24 13:08:01 | 只看該作者
Geometric Algorithms and Combinatorial Optimization
18#
發(fā)表于 2025-3-24 17:21:29 | 只看該作者
Martin Gr?tschel,László Lovász,Alexander Schrijver
19#
發(fā)表于 2025-3-24 19:07:36 | 只看該作者
Stable Sets in Graphs, classes of graphs which are in fact characterized by such a condition, most notably the class of perfect graphs. Using this approach, we shall develop a polynomial time algorithm for the stable set problem for perfect graphs. So far no purely combinatorial algorithm has been found to solve this pro
20#
發(fā)表于 2025-3-24 23:27:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 18:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大连市| 石屏县| 盐亭县| 比如县| 阜康市| 光泽县| 镶黄旗| 北海市| 马关县| 闽清县| 清水河县| 巧家县| 井陉县| 郧西县| 禄劝| 许昌市| 株洲县| 桐乡市| 青铜峡市| 中阳县| 遵义县| 肥城市| 绥芬河市| 巧家县| 鄢陵县| 石渠县| 无棣县| 内黄县| 望都县| 肇州县| 天门市| 清原| 肇东市| 农安县| 民县| 肇庆市| 星座| 永善县| 西和县| 搜索| 民乐县|