找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Genetic Theory for Cubic Graphs; Pouya Baniasadi,Vladimir Ejov,Michael Haythorpe Book 2016 Springer International Publishing Switzerland 2

[復(fù)制鏈接]
樓主: HIV763
11#
發(fā)表于 2025-3-23 10:29:01 | 只看該作者
12#
發(fā)表于 2025-3-23 17:08:19 | 只看該作者
13#
發(fā)表于 2025-3-23 21:42:02 | 只看該作者
14#
發(fā)表于 2025-3-23 22:18:44 | 只看該作者
Genetic Theory for Cubic Graphs,t a slightly more complicated descendant. We prove that every descendant can be constructed from a family of genes via the use of our six operations, and state the result (to be proved in Chap.?3) that this family is unique for any given descendant.
15#
發(fā)表于 2025-3-24 02:27:32 | 只看該作者
Inherited Properties of Descendants,ively, to construct a graph with desired properties by choosing smaller genes with those properties. We follow each section with a discussion of famous results and conjectures relating to the graph properties, and how the results of this chapter relate to them.
16#
發(fā)表于 2025-3-24 10:23:53 | 只看該作者
Uniqueness of Ancestor Genes, graph has cardinality which is a fixed constant for that graph. We then proceed to prove that for any descendant without parthenogenic objects, it is possible to isolate at least two genes with single inverse breeding operations. Finally, we use each of these results to prove the uniqueness theorem.
17#
發(fā)表于 2025-3-24 11:58:44 | 只看該作者
Book 2016lesman Problem) may be “inherited” from simpler graphs which – in an appropriate sense – could be seen as “ancestors” of the given graph instance. The authors propose a partitioning of the set of unlabeled, connected cubic graphs into two disjoint subsets named genes and descendants, where the cardi
18#
發(fā)表于 2025-3-24 14:53:20 | 只看該作者
19#
發(fā)表于 2025-3-24 19:38:29 | 只看該作者
20#
發(fā)表于 2025-3-24 23:40:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
六安市| 咸阳市| 凤阳县| 新绛县| 仁寿县| 乐昌市| 双桥区| 灵山县| 社旗县| 榆中县| 竹溪县| 留坝县| 淄博市| 台东县| 新巴尔虎右旗| 石台县| 密云县| 天祝| 石首市| 邯郸市| 常熟市| 平湖市| 沁源县| 新河县| 梁平县| 莱西市| 舞钢市| 肥城市| 永平县| 通城县| 西城区| 镇坪县| 阿拉尔市| 麦盖提县| 太原市| 康乐县| 宜宾县| 阿瓦提县| 抚宁县| 万年县| 保亭|