找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Genetic Programming for Production Scheduling; An Evolutionary Lear Fangfang Zhang,Su Nguyen,Mengjie Zhang Book 2021 The Editor(s) (if appl

[復(fù)制鏈接]
樓主: 恰當(dāng)
21#
發(fā)表于 2025-3-25 03:26:06 | 只看該作者
978-981-16-4861-8The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
22#
發(fā)表于 2025-3-25 10:25:36 | 只看該作者
Genetic Programming for Production Scheduling978-981-16-4859-5Series ISSN 2730-9908 Series E-ISSN 2730-9916
23#
發(fā)表于 2025-3-25 12:24:27 | 只看該作者
Fangfang Zhang,Su Nguyen,Mengjie ZhangPresents theoretical aspects and applications of genetic programming for production scheduling.Explores the modern and unique interfaces between operations research and machine learning.Offers an intr
24#
發(fā)表于 2025-3-25 19:45:57 | 只看該作者
25#
發(fā)表于 2025-3-25 22:56:36 | 只看該作者
26#
發(fā)表于 2025-3-26 01:46:59 | 只看該作者
Learning Schedule Construction Heuristicseduling algorithms. Details about attributes extracted from production data and representations of scheduling construction heuristics are provided in this chapter. The advantages and disadvantages of each representation are analysed, and the generalisation of evolved heuristics is examined by using
27#
發(fā)表于 2025-3-26 07:09:38 | 只看該作者
Learning Schedule Improvement Heuristicss presented in this book and other meta-heuristics in the literature. Extended attribute sets and several evaluation mechanisms are introduced in this chapter to allow GP to evolve scheduling improvement heuristics. Experiment results show that the evolved scheduling improvement heuristics outperfor
28#
發(fā)表于 2025-3-26 12:04:46 | 只看該作者
Learning to Augment Operations Research Algorithmsing. A simple genetic programming algorithm is introduced to evolve variable selectors for optimisation solvers to reduce the computational efforts required to obtain high-quality or optimal solutions for production scheduling. The optimisation solver enhanced by the evolved variable selectors can f
29#
發(fā)表于 2025-3-26 14:50:03 | 只看該作者
Representations with Multi-tree and Cooperative Coevolutionexible job shop scheduling. Two strategies are introduced, one is the genetic programming with cooperative coevolution, the other is the genetic programming with multi-tree representation. The results show the advantages and disadvantages of these two strategies over learning two rules simultaneousl
30#
發(fā)表于 2025-3-26 17:00:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金门县| 离岛区| 彰武县| 连山| 唐山市| 正蓝旗| 农安县| 民勤县| 万宁市| 霍城县| 工布江达县| 巩留县| 镇平县| 滨海县| 娄底市| 黑河市| 翁牛特旗| 荥阳市| 铜川市| 大化| 延边| 突泉县| 山阳县| 长汀县| 彭州市| 甘肃省| 永寿县| 布尔津县| 犍为县| 阿拉善右旗| 灵山县| 元朗区| 特克斯县| 达孜县| 井研县| 南昌市| 旅游| 互助| 罗甸县| 苗栗市| 贵港市|