找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Genetic Programming; 21st European Confer Mauro Castelli,Lukas Sekanina,Pablo García-Sánchez Conference proceedings 2018 Springer Internati

[復(fù)制鏈接]
樓主: 請回避
51#
發(fā)表于 2025-3-30 09:12:56 | 只看該作者
Multi-objective Evolution of Ultra-Fast General-Purpose Hash Functionse application-specific as well as general-purpose hash functions, where the main design target was the quality of hashing. As hash functions are frequently called in various time-critical applications, it is important to optimize their implementation with respect to the execution time. In this paper
52#
發(fā)表于 2025-3-30 12:58:04 | 只看該作者
53#
發(fā)表于 2025-3-30 20:16:44 | 只看該作者
Evolving Better RNAfold Structure Predictionich give more accurate predictions of how RNA molecules fold up. Genetic improvement updates 29% of the dynamic programming free energy model parameters. In most cases (50.3%) GI gives better results on 4655 known secondary structures from RNA_STRAND (29.0% are worse and 20.7% are unchanged). Indeed
54#
發(fā)表于 2025-3-30 20:43:54 | 只看該作者
55#
發(fā)表于 2025-3-31 01:36:02 | 只看該作者
56#
發(fā)表于 2025-3-31 08:53:07 | 只看該作者
Structurally Layered Representation Learning: Towards Deep Learning Through Genetic Programmingiptive/discriminative representations from raw data, we propose a structurally layered representation that allows GP to learn a feature space from large scale and high dimensional data sets. Previous efforts from the GP community for feature learning have focused on small data sets with a few input
57#
發(fā)表于 2025-3-31 10:42:56 | 只看該作者
https://doi.org/10.1007/978-3-319-77553-1artificial intelligence; evolutionary algorithms; evolutionary computation; evolvable hardware; games; ge
58#
發(fā)表于 2025-3-31 13:22:06 | 只看該作者
59#
發(fā)表于 2025-3-31 18:50:44 | 只看該作者
60#
發(fā)表于 2025-3-31 21:57:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
进贤县| 台东市| 化隆| 祁门县| 鄂尔多斯市| 连江县| 莆田市| 平塘县| 东乌| 栾川县| 马鞍山市| 兴和县| 铜川市| 凌源市| 花垣县| 图片| 阳西县| 航空| 雷山县| 铁岭县| 阆中市| 抚松县| 宜川县| 高唐县| 宁晋县| 南丹县| 共和县| 林西县| 永春县| 滦南县| 盘锦市| 大邑县| 揭西县| 从化市| 宿州市| 鄢陵县| 邵东县| 罗田县| 彭山县| 仁化县| 平塘县|