找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Genetic Algorithms and Genetic Programming in Computational Finance; Shu-Heng Chen Book 2002 Springer Science+Business Media New York 2002

[復制鏈接]
樓主: 會議記錄
21#
發(fā)表于 2025-3-25 07:10:49 | 只看該作者
https://doi.org/10.1007/978-981-19-3593-0asting. The novelty of FGP-2 is that, as a forecasting tool, it provides the user with a handle for tuning the precision against the rate of missing opportunities. This allows the user to pick investment opportunities with greater confidence.
22#
發(fā)表于 2025-3-25 10:22:20 | 只看該作者
23#
發(fā)表于 2025-3-25 12:27:33 | 只看該作者
Wolfgang Dunkel,Margit Weihrich JPY/USD markets. GARCH(1,1) models serve used as a benchmark. While the GARCH model outperforms the genetic program at short horizons using the mean-squared-error (MSE) criterion, the genetic program often outperforms the GARCH at longer horizons and consistently returns lower mean absolute forecast errors (MAE).
24#
發(fā)表于 2025-3-25 16:52:19 | 只看該作者
25#
發(fā)表于 2025-3-25 23:00:12 | 只看該作者
Eddie for Financial Forecastingasting. The novelty of FGP-2 is that, as a forecasting tool, it provides the user with a handle for tuning the precision against the rate of missing opportunities. This allows the user to pick investment opportunities with greater confidence.
26#
發(fā)表于 2025-3-26 04:03:20 | 只看該作者
Forecasting Market Indices Using Evolutionary Automatic Programming trading rules for market indices. A number of markets are analysed; these are the UK’s FTSE, Japan’s Nikkei, and the German DAX. The preliminary findings indicate that the methodology has much potential.
27#
發(fā)表于 2025-3-26 06:59:43 | 只看該作者
Using a Genetic Program to Predict Exchange Rate Volatility JPY/USD markets. GARCH(1,1) models serve used as a benchmark. While the GARCH model outperforms the genetic program at short horizons using the mean-squared-error (MSE) criterion, the genetic program often outperforms the GARCH at longer horizons and consistently returns lower mean absolute forecast errors (MAE).
28#
發(fā)表于 2025-3-26 10:17:36 | 只看該作者
https://doi.org/10.1007/978-1-4615-0835-9Arbitrage; Finance; Sage; Simulation; agents; algorithms; automatic programming; cash flow; genetic programm
29#
發(fā)表于 2025-3-26 16:39:42 | 只看該作者
30#
發(fā)表于 2025-3-26 19:37:38 | 只看該作者
Customer Relationship Management applications, such as forecasting, trading, and portfolio management. We then trace the recent extensions to cash flow management, option pricing, volatility forecasting, and arbitrage. The direction then turns to agent-based computational finance, a bottom-up approach to the study of financial mar
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 05:00
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
辉南县| 丰城市| 弥渡县| 资源县| 冀州市| 云和县| 桑植县| 司法| 桦川县| 甘孜县| 洞口县| 水城县| 延边| 米泉市| 虎林市| 黔南| 台北市| 泸溪县| 乐亭县| 厦门市| 方正县| 滁州市| 保德县| 化隆| 涿州市| 中方县| 河西区| 柳州市| 龙海市| 余庆县| 阳城县| 确山县| 石泉县| 高雄县| 海淀区| 深水埗区| 长岛县| 杂多县| 宜兰县| 井陉县| 金坛市|