找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generative AI for Effective Software Development; Anh Nguyen-Duc,Pekka Abrahamsson,Foutse Khomh Book 2024 The Editor(s) (if applicable) an

[復(fù)制鏈接]
樓主: 猛烈抨擊
11#
發(fā)表于 2025-3-23 11:11:55 | 只看該作者
developers by enabling them to work more efficiently, speed up the learning process, and increase motivation by reducing tedious and repetitive tasks. Moreover, our results indicate a change in teamwork collaboration due to software engineers using GenAI for help instead of asking coworkers, which impacts the learning loop in agile teams.
12#
發(fā)表于 2025-3-23 17:07:56 | 只看該作者
Coefficients for Bivariate Relations,terview with them. Among the lessons learned are that the use of generative AI tools drives the adoption of additional developer tools and that developers intentionally use ChatGPT and Copilot in a complementary manner. We hope that sharing these practical experiences will help other software teams in successfully adopting generative AI tools.
13#
發(fā)表于 2025-3-23 19:33:50 | 只看該作者
An Overview on Large Language ModelsLMs and augmented LLMs. Furthermore, we delve into the evaluation of LLM research, introducing benchmark datasets and relevant tools in this context. The chapter concludes by exploring limitations in leveraging LLMs for SE tasks.
14#
發(fā)表于 2025-3-23 23:16:47 | 只看該作者
15#
發(fā)表于 2025-3-24 03:00:03 | 只看該作者
Advancing Requirements Engineering Through Generative AI: Assessing the Role of LLMsmprove the efficiency and accuracy of requirements-related tasks. We propose key directions and SWOT analysis for research and development in using LLMs for RE, focusing on the potential for requirements elicitation, analysis, specification, and validation. We further present the results from a preliminary evaluation, in this context.
16#
發(fā)表于 2025-3-24 08:19:10 | 只看該作者
Generative AI for Software Development: A Family of Studies on Code Generationiscuss the potential pitfalls of using generative AI to perform such SE tasks, as well as the quality of the code generated by these models. Finally, we explore research opportunities in harnessing generative AI, with a particular emphasis on tasks that require code generation.
17#
發(fā)表于 2025-3-24 12:55:45 | 只看該作者
18#
發(fā)表于 2025-3-24 17:48:39 | 只看該作者
19#
發(fā)表于 2025-3-24 19:49:48 | 只看該作者
20#
發(fā)表于 2025-3-25 02:39:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 13:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
延川县| 蒙山县| 巫溪县| 靖州| 宿州市| 玉溪市| 湖北省| 肥城市| 常山县| 呼图壁县| 石景山区| 泗阳县| 依兰县| 镇远县| 惠安县| 三河市| 大新县| 呼伦贝尔市| 长武县| 高碑店市| 伊宁市| 莱芜市| 巴塘县| 庆元县| 邛崃市| 新营市| 当涂县| 中西区| 固安县| 定远县| 威海市| 临沭县| 醴陵市| 收藏| 额济纳旗| 南木林县| 铜陵市| 石台县| 益阳市| 汝南县| 子洲县|