找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Current Topics in Pure and Computational Complex Analysis; Santosh Joshi,Michael Dorff,Indrajit Lahiri Book 2014 Springer India 2014 Compl

[復制鏈接]
樓主: 多話
31#
發(fā)表于 2025-3-27 00:51:48 | 只看該作者
32#
發(fā)表于 2025-3-27 03:23:37 | 只看該作者
https://doi.org/10.1007/978-81-322-2113-5Complex analysis; Geometric function theory; Harmonic mappings; Integral operators; Nevanlinna theory; Va
33#
發(fā)表于 2025-3-27 07:39:48 | 只看該作者
34#
發(fā)表于 2025-3-27 10:30:48 | 只看該作者
35#
發(fā)表于 2025-3-27 15:37:32 | 只看該作者
Nutzen eines Unternehmensdatenmodellshe location of the zeros of polynomials. In this article we begin with the earliest results of Enestr?m and Kakeya and conclude this by presenting some of the recent results on this subject. Our article is expository in nature.
36#
發(fā)表于 2025-3-27 21:12:03 | 只看該作者
,Enestr?m–Kakeya Theorem and Some of Its Generalizations,he location of the zeros of polynomials. In this article we begin with the earliest results of Enestr?m and Kakeya and conclude this by presenting some of the recent results on this subject. Our article is expository in nature.
37#
發(fā)表于 2025-3-27 22:31:14 | 只看該作者
38#
發(fā)表于 2025-3-28 02:05:48 | 只看該作者
39#
發(fā)表于 2025-3-28 07:42:51 | 只看該作者
Starlikeness and Convexity of Certain Integral Transforms by using Duality Technique, involving starlike and convex functions. Particular values of . give rise to well-known integral operators. Investigation of the parameters for such values leads to interesting results in univalent function theory. This chapter outlines all the possible results available in the literature in this direction to provide the reader an overview.
40#
發(fā)表于 2025-3-28 13:23:35 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
孙吴县| 嘉祥县| 金溪县| 安陆市| 绍兴县| 常州市| 南开区| 大安市| 通渭县| 正镶白旗| 阿鲁科尔沁旗| 潞城市| 卢湾区| 凌源市| 葵青区| 封丘县| 怀柔区| 桓台县| 高平市| 双峰县| 体育| 贵溪市| 屯门区| 正定县| 耒阳市| 山阳县| 辰溪县| 江北区| 曲水县| 康乐县| 安西县| 鄂托克旗| 海淀区| 普陀区| 虎林市| 双峰县| 钟山县| 桂平市| 灵山县| 隆安县| 谷城县|