找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generating Families in the Restricted Three-Body Problem; Michel Hénon Book 1997 Springer-Verlag Berlin Heidelberg 1997 astronomy.bifurcat

[復制鏈接]
樓主: hypothyroidism
21#
發(fā)表于 2025-3-25 05:34:23 | 只看該作者
22#
發(fā)表于 2025-3-25 10:07:21 | 只看該作者
978-3-662-14156-4Springer-Verlag Berlin Heidelberg 1997
23#
發(fā)表于 2025-3-25 14:50:55 | 只看該作者
24#
發(fā)表于 2025-3-25 18:35:14 | 只看該作者
25#
發(fā)表于 2025-3-25 20:44:12 | 只看該作者
Generating Orbits of the First Species,plete classification has been achieved only recently with the work of Bruno (1976; 1980a; 1994, Chap. VII) on asymmetric orbits. A review of the results up to 1975 can be found in Hagihara (1975, pp. 264 to 339).
26#
發(fā)表于 2025-3-26 01:40:21 | 只看該作者
Generating Orbits of the Second Species,t is periodic, it has an infinity of collisions. (Note that there can be more than one collision per period.) The collisions separate the orbit into pieces, which we call .. Two consecutive arcs join at a collision; their tangents at the collision form an angle, generally different from zero. This a
27#
發(fā)表于 2025-3-26 04:46:23 | 只看該作者
Generating Orbits of the Third Species,es to a point. The period . can probably take any positive value (see below). Thus, generating orbits of the third species can be formally considered as forming a single one-parameter family, which we call the . This family is of a peculiar kind: all orbits are identical in shape since they reduce t
28#
發(fā)表于 2025-3-26 12:32:37 | 只看該作者
29#
發(fā)表于 2025-3-26 15:16:17 | 只看該作者
30#
發(fā)表于 2025-3-26 19:36:06 | 只看該作者
0940-7677 recipes are given. Their use is illustrated by determining a number of generating families, associated with natural families of the restricted problem, and comparing them with numerical computations in the Earth-Moon and Sun-Jupiter case.978-3-662-14156-4978-3-540-69650-6Series ISSN 0940-7677
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-5 20:45
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
勃利县| 凌云县| 昌乐县| 平凉市| 个旧市| 荣成市| 高阳县| 长丰县| 长治市| 泗水县| 扎兰屯市| 民权县| 江西省| 凌海市| 武清区| 阿克苏市| 视频| 宜良县| 吴忠市| 方城县| 政和县| 永年县| 田阳县| 关岭| 惠来县| 安徽省| 无为县| 盐边县| 昌图县| 南通市| 南溪县| 陕西省| 祁门县| 临海市| 宁德市| 扎兰屯市| 和林格尔县| 册亨县| 贡觉县| 陈巴尔虎旗| 阳谷县|