找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC; Didier Aussel,C.S. Lalitha Book 2017 Springer Nature Singapore Pte Lt

[復(fù)制鏈接]
樓主: 交叉路口
21#
發(fā)表于 2025-3-25 05:03:16 | 只看該作者
22#
發(fā)表于 2025-3-25 08:04:28 | 只看該作者
https://doi.org/10.1007/978-1-349-14805-9applying specially adapted CQs, we want to present here a variational-analytic approach to dual stationarity conditions for MPECs on the basis of Lipschitzian properties of the perturbed generalized equation. The focus will be on the so-called calmness property, ensuring an appropriate calculus rule for the Mordukhovich normal cone.
23#
發(fā)表于 2025-3-25 15:27:49 | 只看該作者
,Calmness as a Constraint Qualification for?M-Stationarity Conditions in MPECs,applying specially adapted CQs, we want to present here a variational-analytic approach to dual stationarity conditions for MPECs on the basis of Lipschitzian properties of the perturbed generalized equation. The focus will be on the so-called calmness property, ensuring an appropriate calculus rule for the Mordukhovich normal cone.
24#
發(fā)表于 2025-3-25 18:17:54 | 只看該作者
25#
發(fā)表于 2025-3-25 21:31:33 | 只看該作者
Optimality Conditions for Bilevel Programming: An Approach Through Variational Analysis,itions. We also relate various solution concepts in bilevel programming and establish some new connections. We study in considerable detail the notion of partial calmness and its application to derive necessary optimality conditions and also give some illustrative examples.
26#
發(fā)表于 2025-3-26 03:09:37 | 只看該作者
27#
發(fā)表于 2025-3-26 05:12:31 | 只看該作者
Contemporary British Industrial Relationstion of this problem which leads to a nonsmooth optimization problem. Besides the resulting necessary optimality conditions, first solution algorithms for the bilevel problem using these transformations are presented.
28#
發(fā)表于 2025-3-26 08:31:44 | 只看該作者
https://doi.org/10.1057/9781137429353lts we obtained recently. We also briefly discuss some ongoing related research. As an illustrative example, a section is devoted to the computation of the Independent System Operator response function for a symmetric binodal setting with piece-wise linear production cost functions.
29#
發(fā)表于 2025-3-26 13:10:06 | 只看該作者
30#
發(fā)表于 2025-3-26 18:27:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汝阳县| 两当县| 临海市| 丰城市| 冀州市| 大庆市| 涿鹿县| 普定县| 广安市| 屏南县| 三江| 防城港市| 衡山县| 呼伦贝尔市| 凌云县| 河西区| 京山县| 手游| 柘荣县| 翁源县| 噶尔县| 体育| 三河市| 左贡县| 科技| 横山县| 津南区| 康定县| 新密市| 贡嘎县| 沙河市| 蒙城县| 贵定县| 咸丰县| 深水埗区| 罗山县| 工布江达县| 扎囊县| 开江县| 黄石市| 衡阳县|