找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Fractional Calculus; New Advancements and George A. Anastassiou Book 2021 The Editor(s) (if applicable) and The Author(s), unde

[復制鏈接]
樓主: interminable
41#
發(fā)表于 2025-3-28 18:38:28 | 只看該作者
42#
發(fā)表于 2025-3-28 22:47:27 | 只看該作者
Vectorial Generalized ,-Fractional Direct and Iterated Quantitative Approximation by Linear Operato generalized .-direct and iterated fractional derivatives, built in vector moduli of continuity. We treat wide and general classes of Banach space valued functions. We give applications to vectorial Bernstein operators. See also[.].
43#
發(fā)表于 2025-3-28 23:55:29 | 只看該作者
Trigonometric Commutative Caputo Fractional Korovkin Approximation for Stochastic Processes,are given by the trigonometric fractional stochastic inequalities involving the first modulus of continuity of the expectation of the .th right and left fractional derivatives of the engaged stochastic process, ., ..
44#
發(fā)表于 2025-3-29 05:09:44 | 只看該作者
Shadi Tabibian,Rodney M. Camirevolving the stochastic modulus of continuity of the .th fractional derivatives of the engaged stochastic process, ., .. The impressive fact is that the basic real Korovkin test functions assumptions are enough for the conclusions of our fractional stochastic Korovkin theory. We give applications to stochastic Bernstein operators. See also[.].
45#
發(fā)表于 2025-3-29 11:07:19 | 只看該作者
Principles of Stochastic Caputo Fractional Calculus with Fractional Approximation of Stochastic Provolving the stochastic modulus of continuity of the .th fractional derivatives of the engaged stochastic process, ., .. The impressive fact is that the basic real Korovkin test functions assumptions are enough for the conclusions of our fractional stochastic Korovkin theory. We give applications to stochastic Bernstein operators. See also[.].
46#
發(fā)表于 2025-3-29 14:48:55 | 只看該作者
2198-4182 puto, Canavati, and Conformable types to a great variety of .This book applies generalized fractional differentiation techniques of Caputo, Canavati and Conformable types to a great variety of integral inequalities e.g. of Ostrowski and Opial types, etc. Some of these are extended to Banach space va
47#
發(fā)表于 2025-3-29 18:40:55 | 只看該作者
https://doi.org/10.1057/9780230287303, based on its values over a finite set of points including at the endpoints of its interval of definition. Our method relies on the right and left generalized fractional Taylor’s formulae. The iterated generalized fractional derivatives case is also studied. We give applications at the end. See also[.].
48#
發(fā)表于 2025-3-29 23:01:04 | 只看該作者
49#
發(fā)表于 2025-3-30 02:17:00 | 只看該作者
50#
發(fā)表于 2025-3-30 07:23:06 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 08:22
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
桑植县| 光山县| 九寨沟县| 祁门县| 吉木萨尔县| 三门峡市| 六枝特区| 龙海市| 长沙市| 敦化市| 武宣县| 柞水县| 江孜县| 冷水江市| 东源县| 轮台县| 习水县| 封开县| 许昌市| 辽宁省| 民丰县| 从化市| 绥化市| 宜昌市| 潞城市| 海口市| 霍林郭勒市| 莎车县| 政和县| 那坡县| 城步| 静安区| 湖北省| 和硕县| 敖汉旗| 磐安县| 陵川县| 福海县| 陇西县| 云梦县| 竹溪县|