找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Convexity and Vector Optimization; Shashi Kant Mishra,Shou-Yang Wang,Kin Keung Lai Book 2009 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
樓主: 劉興旺
21#
發(fā)表于 2025-3-25 06:03:39 | 只看該作者
22#
發(fā)表于 2025-3-25 10:21:37 | 只看該作者
23#
發(fā)表于 2025-3-25 11:38:34 | 只看該作者
978-3-642-09930-4Springer-Verlag Berlin Heidelberg 2009
24#
發(fā)表于 2025-3-25 17:16:39 | 只看該作者
25#
發(fā)表于 2025-3-26 00:00:48 | 只看該作者
https://doi.org/10.1007/978-3-540-85671-9Duality; Generalized Convexity; Kuhn-Tucker Conditions; Mond-Weir type Duality; Multiobjective Programmi
26#
發(fā)表于 2025-3-26 02:01:39 | 只看該作者
Shashi Kant Mishra,Shou-Yang Wang,Kin Keung LaiThe reader will come to know about the present status of the research in this hot area of research field.The reader does not have to consult various research papers from different journals.Will provid
27#
發(fā)表于 2025-3-26 07:46:11 | 只看該作者
https://doi.org/10.1007/978-0-387-21636-2Following Rueda et al. (1995) and Aghezzaf and Hachimi (2001), we define the generalized type I univex problems. In the following definitions, .,. : . × . × [0,1]→., . = lim .(.,.,λ) ≥0, and b does not depend on λ if functions are differentiable, ?.,?. :.→. and η:. ×.→. is an .-dimensionalvector-valued function.
28#
發(fā)表于 2025-3-26 11:50:25 | 只看該作者
29#
發(fā)表于 2025-3-26 14:37:53 | 只看該作者
Generalized Type I and Related Functions,Following Rueda et al. (1995) and Aghezzaf and Hachimi (2001), we define the generalized type I univex problems. In the following definitions, .,. : . × . × [0,1]→., . = lim .(.,.,λ) ≥0, and b does not depend on λ if functions are differentiable, ?.,?. :.→. and η:. ×.→. is an .-dimensionalvector-valued function.
30#
發(fā)表于 2025-3-26 16:59:30 | 只看該作者
Optimality Conditions,In this chapter, we study optimality conditions for several mathematical programs involving type-I and other related functions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 22:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁乡县| 张家界市| 革吉县| 虞城县| 北票市| 保山市| 肇源县| 鸡西市| 汕尾市| 彰武县| 宜君县| 临沭县| 榆树市| 金乡县| 彩票| 团风县| 吉隆县| 永平县| 定南县| 原阳县| 察雅县| 武义县| 耒阳市| 乌拉特后旗| 咸丰县| 湖南省| 吉安市| 湘乡市| 格尔木市| 呼和浩特市| 紫阳县| 额尔古纳市| 庆云县| 彭泽县| 新津县| 洪泽县| 南康市| 海宁市| 鄂尔多斯市| 高碑店市| 通河县|