找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Convexity and Vector Optimization; Shashi Kant Mishra,Shou-Yang Wang,Kin Keung Lai Book 2009 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
樓主: 劉興旺
21#
發(fā)表于 2025-3-25 06:03:39 | 只看該作者
22#
發(fā)表于 2025-3-25 10:21:37 | 只看該作者
23#
發(fā)表于 2025-3-25 11:38:34 | 只看該作者
978-3-642-09930-4Springer-Verlag Berlin Heidelberg 2009
24#
發(fā)表于 2025-3-25 17:16:39 | 只看該作者
25#
發(fā)表于 2025-3-26 00:00:48 | 只看該作者
https://doi.org/10.1007/978-3-540-85671-9Duality; Generalized Convexity; Kuhn-Tucker Conditions; Mond-Weir type Duality; Multiobjective Programmi
26#
發(fā)表于 2025-3-26 02:01:39 | 只看該作者
Shashi Kant Mishra,Shou-Yang Wang,Kin Keung LaiThe reader will come to know about the present status of the research in this hot area of research field.The reader does not have to consult various research papers from different journals.Will provid
27#
發(fā)表于 2025-3-26 07:46:11 | 只看該作者
https://doi.org/10.1007/978-0-387-21636-2Following Rueda et al. (1995) and Aghezzaf and Hachimi (2001), we define the generalized type I univex problems. In the following definitions, .,. : . × . × [0,1]→., . = lim .(.,.,λ) ≥0, and b does not depend on λ if functions are differentiable, ?.,?. :.→. and η:. ×.→. is an .-dimensionalvector-valued function.
28#
發(fā)表于 2025-3-26 11:50:25 | 只看該作者
29#
發(fā)表于 2025-3-26 14:37:53 | 只看該作者
Generalized Type I and Related Functions,Following Rueda et al. (1995) and Aghezzaf and Hachimi (2001), we define the generalized type I univex problems. In the following definitions, .,. : . × . × [0,1]→., . = lim .(.,.,λ) ≥0, and b does not depend on λ if functions are differentiable, ?.,?. :.→. and η:. ×.→. is an .-dimensionalvector-valued function.
30#
發(fā)表于 2025-3-26 16:59:30 | 只看該作者
Optimality Conditions,In this chapter, we study optimality conditions for several mathematical programs involving type-I and other related functions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 03:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江孜县| 凤凰县| 彰武县| 基隆市| 施秉县| 永修县| 乌鲁木齐市| 唐海县| 临澧县| 信阳市| 濮阳市| 城口县| 固始县| 台安县| 滦平县| 曲阳县| 曲松县| 沁水县| 乐平市| 正蓝旗| 囊谦县| 蕲春县| 大英县| 岐山县| 芒康县| 册亨县| 石城县| 竹北市| 武平县| 唐海县| 金湖县| 米脂县| 临泉县| 伊通| 赣州市| 夹江县| 湟中县| 亳州市| 宜良县| 高邮市| 安乡县|