找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Convexity and Optimization; Theory and Applicati Alberto Cambini,Laura Martein Book 2009 Springer-Verlag Berlin Heidelberg 2009

[復(fù)制鏈接]
樓主: 佯攻
11#
發(fā)表于 2025-3-23 12:53:58 | 只看該作者
In this chapter we shall consider, under the differentiability assumption, the classes of generalized convex functions introduced in the previous chapter. Furthermore, a new class is defined: that of pseudoconvex functions, which is perhaps the most important of all.
12#
發(fā)表于 2025-3-23 17:45:47 | 只看該作者
Origin and Detection of Microflaws in GlassIn this chapter, the role of generalized convexity in Optimization is stressed. After presenting the Fritz John and Karush-Kuhn-Tucker necessary optimality conditions, which are proven by means of separation theorems, some constraint qualifications involving generalized convexity are illustrated.
13#
發(fā)表于 2025-3-23 21:42:12 | 只看該作者
The Methods and Materials of Demography,As convexity plays an important role in solving mathematical programming problems, so, too, does monotonicity in solving variational inequality and nonlinear complementarity problems. Pioneering work was done by Cottle, Dantzig, Karamardian, Stampacchia, and many others (see for instance [71, 74, 134, 154, 155]).
14#
發(fā)表于 2025-3-24 01:23:19 | 只看該作者
Sheryl C. Wilson,Theodore X. BarberGeneralized convexity of quadratic functions has been widely studied; the main historical references are Martos [209, 210, 211], Ferland [108], Cottle and Ferland [73], Schaible [236, 243, 242, 248].
15#
發(fā)表于 2025-3-24 05:25:26 | 只看該作者
16#
發(fā)表于 2025-3-24 07:45:25 | 只看該作者
17#
發(fā)表于 2025-3-24 11:41:01 | 只看該作者
Optimality and Generalized Convexity,In this chapter, the role of generalized convexity in Optimization is stressed. After presenting the Fritz John and Karush-Kuhn-Tucker necessary optimality conditions, which are proven by means of separation theorems, some constraint qualifications involving generalized convexity are illustrated.
18#
發(fā)表于 2025-3-24 15:08:34 | 只看該作者
Generalized Convexity and Generalized Monotonicity,As convexity plays an important role in solving mathematical programming problems, so, too, does monotonicity in solving variational inequality and nonlinear complementarity problems. Pioneering work was done by Cottle, Dantzig, Karamardian, Stampacchia, and many others (see for instance [71, 74, 134, 154, 155]).
19#
發(fā)表于 2025-3-24 19:06:18 | 只看該作者
20#
發(fā)表于 2025-3-25 01:41:49 | 只看該作者
0075-8442 .Includes supplementary material: .The authors have written a rigorous yet elementary and self-contained book to present, in a unified framework, generalized convex functions, which are the many non-convex functions that share at least one of the valuable properties of convex functions and which are
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 17:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
格尔木市| 察隅县| 来宾市| 八宿县| 德江县| 宁河县| 连南| 华宁县| 土默特右旗| 广丰县| 东城区| 武城县| 称多县| 荔波县| 佛学| 和顺县| 阜南县| 雷山县| 安新县| 武强县| 屏东市| 开江县| 梓潼县| 饶平县| 罗山县| 南昌县| 怀来县| 三门峡市| 龙陵县| 闵行区| 南投县| 廉江市| 洱源县| 格尔木市| 马鞍山市| 吉木萨尔县| 凉山| 西乌珠穆沁旗| 呼伦贝尔市| 永胜县| 唐河县|