找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Convexity and Generalized Monotonicity; Proceedings of the 6 Nicolas Hadjisavvas,Juan Enrique Martínez-Legaz,Je Conference proc

[復(fù)制鏈接]
查看: 18086|回復(fù): 60
樓主
發(fā)表于 2025-3-21 18:06:45 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Generalized Convexity and Generalized Monotonicity
副標(biāo)題Proceedings of the 6
編輯Nicolas Hadjisavvas,Juan Enrique Martínez-Legaz,Je
視頻videohttp://file.papertrans.cn/383/382189/382189.mp4
叢書名稱Lecture Notes in Economics and Mathematical Systems
圖書封面Titlebook: Generalized Convexity and Generalized Monotonicity; Proceedings of the 6 Nicolas Hadjisavvas,Juan Enrique Martínez-Legaz,Je Conference proc
出版日期Conference proceedings 2001
關(guān)鍵詞Convexity; Generalized convexity; Konvexit?t; Monotonicity; differential equation; generalisierte Konvexi
版次1
doihttps://doi.org/10.1007/978-3-642-56645-5
isbn_softcover978-3-540-41806-1
isbn_ebook978-3-642-56645-5Series ISSN 0075-8442 Series E-ISSN 2196-9957
issn_series 0075-8442
copyrightSpringer-Verlag Berlin Heidelberg 2001
The information of publication is updating

書目名稱Generalized Convexity and Generalized Monotonicity影響因子(影響力)




書目名稱Generalized Convexity and Generalized Monotonicity影響因子(影響力)學(xué)科排名




書目名稱Generalized Convexity and Generalized Monotonicity網(wǎng)絡(luò)公開度




書目名稱Generalized Convexity and Generalized Monotonicity網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Generalized Convexity and Generalized Monotonicity被引頻次




書目名稱Generalized Convexity and Generalized Monotonicity被引頻次學(xué)科排名




書目名稱Generalized Convexity and Generalized Monotonicity年度引用




書目名稱Generalized Convexity and Generalized Monotonicity年度引用學(xué)科排名




書目名稱Generalized Convexity and Generalized Monotonicity讀者反饋




書目名稱Generalized Convexity and Generalized Monotonicity讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:57:45 | 只看該作者
Discrete Higher Order Convex Functions and their Applicationsrandom variables involved are discrete. We look for the minimum or maximum of a linear functional acting on an unknown probability distribution subject to a finite number of moment constraints. Using linear programming methodology, we present structural theorems, in both the univariate and multivari
板凳
發(fā)表于 2025-3-22 01:15:13 | 只看該作者
Cuts and Semidefinite Relaxations for Nonconvex Quadratic Problemsedure can be applied for generating tighter positive semidefinite relaxations. Computational results indicate that the relative gap obtained by the relaxations is less than 1% when the number of variables is up to 100. We also show a branch and bound procedure for obtaining an exact solution of the
地板
發(fā)表于 2025-3-22 06:45:13 | 只看該作者
The Steiner Ratio of ,y”, that means, given a finite set . of points in the plane, search for a network interconnecting these points with minimal length. This shortest network must be a tree and is called a Steiner Minimal Tree (SMT). It may contain vertices different from the points which axe to be connected. Such point
5#
發(fā)表于 2025-3-22 10:58:38 | 只看該作者
Normal Cones to Sublevel Sets: An Axiomatic Approach the definition given in [.] (resp. [.]) is recovered. Moreover, the results obtained in [.] are extended in this more general setting. Under mild assumptions, quasiconvex continuous functions are classified, establishing an equivalence relation between functions with the same normal operator. Appli
6#
發(fā)表于 2025-3-22 15:14:45 | 只看該作者
7#
發(fā)表于 2025-3-22 20:33:16 | 只看該作者
8#
發(fā)表于 2025-3-23 00:50:17 | 只看該作者
First and Second Order Characterizations of a Class of Pseudoconcave Vector Functionsoncavity and scalar strict pseudoconcavity, as well as the optimality properties of these functions, such as the global optimality of local optima, of critical points and of points verifying Kuhn-Tucker conditions. The considered functions come out to be particularly relevant since it is possible fo
9#
發(fā)表于 2025-3-23 03:56:16 | 只看該作者
10#
發(fā)表于 2025-3-23 09:26:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
左云县| 邵东县| 漳平市| 萨迦县| 山东| 阜阳市| 东辽县| 安顺市| 德兴市| 兴隆县| 罗山县| 崇信县| 河北区| 观塘区| 南投市| 青州市| 乐昌市| 晋城| 吉林省| 呼图壁县| 新宾| 蓬溪县| 武汉市| 梁河县| 武汉市| 鹿泉市| 贵港市| 怀安县| 石嘴山市| 潼关县| 左云县| 卢氏县| 浦县| 武功县| 玉田县| 阜新市| 遂昌县| 贵阳市| 巴中市| 屏山县| 北碚区|