找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Convexity; Proceedings of the I Sándor Komlósi,Tamás Rapcsák,Siegfried Schaible Conference proceedings 1994 Springer-Verlag Ber

[復(fù)制鏈接]
樓主: Precise
11#
發(fā)表于 2025-3-23 10:40:52 | 只看該作者
12#
發(fā)表于 2025-3-23 17:19:40 | 只看該作者
Design Space Exploration for MAHA Frameworkon for a constrained minimization problem. In this paper we present, in section 1, an appropriate generalization of local and global convexity, which takes into account the structure of the feasible set and thus enables us to narrow the usual gap between necessary and sufficient optimality condition
13#
發(fā)表于 2025-3-23 19:31:49 | 只看該作者
Trajectory Analysis for Drivinggrangian type. In the paper we want to revisit again the problem of establishing regularity assumptions (or constraint qualifications, the difference in the terminology whether consisting in the condition involves or not the objective function) for a Lagrangian type optimality condition. We will dev
14#
發(fā)表于 2025-3-24 02:06:54 | 只看該作者
The Raspberry Pi Desktop Tools,heory. As such, this paper does not contain new results but serves as a hopefully easy introduction to the most important results in duality theory for convex/quasiconvex functions on locally convex real topological vector spaces. Moreover, its connection to optimization is also discussed.
15#
發(fā)表于 2025-3-24 05:01:46 | 只看該作者
16#
發(fā)表于 2025-3-24 09:02:15 | 只看該作者
The Physics of Particular Qualities,Penot subdifferential. These results are combined with exact penalty function techniques to develop first order optimality conditions of the Karush-Kuhn-Tucker type for abstract cone-constrained programming problems. In addition these techniques are applied to quasidifferentiable programming problem
17#
發(fā)表于 2025-3-24 12:40:39 | 只看該作者
18#
發(fā)表于 2025-3-24 15:18:07 | 只看該作者
19#
發(fā)表于 2025-3-24 21:46:51 | 只看該作者
Bayesian Radial Basis Function InterpolationWe introduce a new characterization of functions defined over lattices providing a necessary condition for their quasiconcavity according to the “Ordinal Concavity” approach.
20#
發(fā)表于 2025-3-25 01:27:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 05:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通江县| 蒲江县| 阿拉善盟| 阿合奇县| 南漳县| 滦南县| 田东县| 沙雅县| 兰溪市| 铜鼓县| 苍南县| 广昌县| 寿光市| 东至县| 云和县| 阳朔县| 湖口县| 团风县| 汾阳市| 平泉县| 白山市| 呼和浩特市| 贺州市| 丰镇市| 大宁县| 石泉县| 永平县| 驻马店市| 安义县| 平遥县| 荔波县| 宝应县| 富平县| 庆元县| 大邑县| 阿拉尔市| 万山特区| 慈溪市| 通城县| 霍城县| 来凤县|