找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: General Theory of Irregular Curves; A. D. Alexandrov,Yu. G. Reshetnyak Book 1989 Kluwer Academic Publishers 1989 convergence.differentiabl

[復(fù)制鏈接]
樓主: 法令
11#
發(fā)表于 2025-3-23 11:41:15 | 只看該作者
12#
發(fā)表于 2025-3-23 17:12:49 | 只看該作者
13#
發(fā)表于 2025-3-23 20:08:28 | 只看該作者
Theory of a Turn for Curves on an ,-Dimensional Sphere,In the space . let us arbitrarily fix an origin .. The symbol Ω. will henceforth denote an .-dimensional sphere in the space . of radius equal to 1 and the centre ., . An arbitrary point . ∈ Ω. will be associated with the vector . ∈ . which is a radius-vector of the point . with respect to the point ..
14#
發(fā)表于 2025-3-24 00:51:20 | 只看該作者
Osculating Planes and Class of Curves with an Osculating Plane in the Strong Sense,Let us begin by making certain remarks concerning the notion of orientation for the case of two-dimensional planes in ..
15#
發(fā)表于 2025-3-24 05:11:49 | 只看該作者
Torsion of a Curve in a Three-Dimensional Euclidean Space,Studying a turn of a curve employing the integro-geometrical relations obtained above, required some preliminary considerations of the notion of a turn of a curve lying in one straight line. In an analogous way, studying a torsion of a spatial curve is based on considerations referring to plane curves.
16#
發(fā)表于 2025-3-24 10:10:40 | 只看該作者
https://doi.org/10.1007/978-94-009-2591-5convergence; differentiable manifold; integral; manifold; polygon
17#
發(fā)表于 2025-3-24 12:58:49 | 只看該作者
18#
發(fā)表于 2025-3-24 18:25:09 | 只看該作者
https://doi.org/10.1007/978-3-658-18708-8oints, i.e., a finite sequence of the points of ., such that . ≤ . ≤ .. Let us set .. The least upper boundary of the quantity s(.) on the set of all chains of the curve . is called a length of the curve . and is denoted as s(.). The curve . is termed rectifiable if its length is finite.
19#
發(fā)表于 2025-3-24 22:59:29 | 只看該作者
General Notion of a Curve,chet. Here we are going to dwell in detail on the definition of a curve with the aim of clarifying certain peculiarities that are important while discussing the theory of curves, and of presenting the definition of a curve in a more geometrical form as compared to the classical definition by M. Frechet.
20#
發(fā)表于 2025-3-25 00:18:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平邑县| 肥西县| 曲阜市| 赞皇县| 嘉峪关市| 铜鼓县| 崇义县| 临朐县| 鄂托克前旗| 满洲里市| 仪征市| 克山县| 观塘区| 布拖县| 凤冈县| 中牟县| 南宫市| 景宁| 岳普湖县| 建瓯市| 娱乐| 三门峡市| 黑河市| 麻阳| 长寿区| 桐城市| 德惠市| 呈贡县| 博爱县| 勐海县| 法库县| 郑州市| 昌乐县| 武功县| 宝清县| 吕梁市| 仙游县| 西畴县| 临夏县| 河西区| 奈曼旗|