找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: General Relativity and Gravitational Waves; Essentials of Theory Sanjeev Dhurandhar,Sanjit Mitra Textbook 2022 The Editor(s) (if applicable

[復(fù)制鏈接]
樓主: GRASS
31#
發(fā)表于 2025-3-26 23:11:04 | 只看該作者
32#
發(fā)表于 2025-3-27 04:08:59 | 只看該作者
The Geometry of Curved Spaces and Tensor Calculus,e laws of special relativity are valid. We further describe geodesics as special curves in a curved spacetime. We show how the deviation of neighbouring geodesics can be used to measure the curvature of a spacetime. Further, the Ricci tensor and scalar curvature are defined from which the Einstein tensor is built.
33#
發(fā)表于 2025-3-27 05:21:12 | 只看該作者
2198-7882 s for researchers entering the field.Is the first introducto.This book serves as a textbook for senior undergraduate students who are learning the subject of general relativity and gravitational waves for the first time. Both authors have been teaching the course in various forms for a few decades a
34#
發(fā)表于 2025-3-27 12:14:02 | 只看該作者
35#
發(fā)表于 2025-3-27 16:39:55 | 只看該作者
36#
發(fā)表于 2025-3-27 21:43:11 | 只看該作者
37#
發(fā)表于 2025-3-27 23:16:51 | 只看該作者
38#
發(fā)表于 2025-3-28 06:00:32 | 只看該作者
The Geometry of Curved Spaces and Tensor Calculus,n a tensor—because tensors are coordinate independent quantities. For this purpose, we need to define parallel transport of vectors or in general of tensors. We limit ourselves to Riemannian parallel transport which is relevant to general relativity. It is defined here in a natural way using Cartesi
39#
發(fā)表于 2025-3-28 08:58:51 | 只看該作者
40#
發(fā)表于 2025-3-28 11:23:23 | 只看該作者
Schwarzschild Solution and Black Holes,tion. Historically it was the first solution obtained to Einstein’s equations by Karl Schwarzschild in 1916. In full vacuum, this is a black hole solution with an event horizon at .. Since the primary property of the event horizon is its one way character, we discuss the concept of a one-way membran
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 20:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙南县| 大田县| 黄冈市| 广河县| 堆龙德庆县| 高阳县| 贵南县| 淮南市| 临泉县| 宣威市| 河津市| 京山县| 庆元县| 永寿县| 鹤岗市| 韶关市| 镇安县| 同江市| 永顺县| 正宁县| 侯马市| 南靖县| 高雄县| 孝义市| 平阴县| 龙川县| 庄浪县| 新营市| 萝北县| 灯塔市| 康乐县| 芦山县| 湾仔区| 陵川县| 穆棱市| 金华市| 合江县| 贵阳市| 新津县| 海丰县| 罗田县|