找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: General Relativity and Gravitational Waves; Essentials of Theory Sanjeev Dhurandhar,Sanjit Mitra Textbook 2022 The Editor(s) (if applicable

[復(fù)制鏈接]
樓主: GRASS
31#
發(fā)表于 2025-3-26 23:11:04 | 只看該作者
32#
發(fā)表于 2025-3-27 04:08:59 | 只看該作者
The Geometry of Curved Spaces and Tensor Calculus,e laws of special relativity are valid. We further describe geodesics as special curves in a curved spacetime. We show how the deviation of neighbouring geodesics can be used to measure the curvature of a spacetime. Further, the Ricci tensor and scalar curvature are defined from which the Einstein tensor is built.
33#
發(fā)表于 2025-3-27 05:21:12 | 只看該作者
2198-7882 s for researchers entering the field.Is the first introducto.This book serves as a textbook for senior undergraduate students who are learning the subject of general relativity and gravitational waves for the first time. Both authors have been teaching the course in various forms for a few decades a
34#
發(fā)表于 2025-3-27 12:14:02 | 只看該作者
35#
發(fā)表于 2025-3-27 16:39:55 | 只看該作者
36#
發(fā)表于 2025-3-27 21:43:11 | 只看該作者
37#
發(fā)表于 2025-3-27 23:16:51 | 只看該作者
38#
發(fā)表于 2025-3-28 06:00:32 | 只看該作者
The Geometry of Curved Spaces and Tensor Calculus,n a tensor—because tensors are coordinate independent quantities. For this purpose, we need to define parallel transport of vectors or in general of tensors. We limit ourselves to Riemannian parallel transport which is relevant to general relativity. It is defined here in a natural way using Cartesi
39#
發(fā)表于 2025-3-28 08:58:51 | 只看該作者
40#
發(fā)表于 2025-3-28 11:23:23 | 只看該作者
Schwarzschild Solution and Black Holes,tion. Historically it was the first solution obtained to Einstein’s equations by Karl Schwarzschild in 1916. In full vacuum, this is a black hole solution with an event horizon at .. Since the primary property of the event horizon is its one way character, we discuss the concept of a one-way membran
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 21:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
交城县| 泌阳县| 万载县| 新丰县| 保康县| 洛南县| 云安县| 汤原县| 安图县| 镇赉县| 甘南县| 星子县| 天长市| 右玉县| 宝丰县| 龙川县| 志丹县| 阜城县| 太康县| 漳浦县| 噶尔县| 称多县| 梁山县| 衡南县| 汉源县| 文昌市| 山阴县| 泰顺县| 深水埗区| 和静县| 沙坪坝区| 宜丰县| 柞水县| 通河县| 育儿| 阆中市| 沙湾县| 金乡县| 康保县| 鹤山市| 神木县|