找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: General Relativity Without Calculus; A Concise Introducti Jose Natario Book 2011 Springer-Verlag Berlin Heidelberg 2011 Black Holes geometr

[復制鏈接]
樓主: 獨裁者
21#
發(fā)表于 2025-3-25 04:29:35 | 只看該作者
22#
發(fā)表于 2025-3-25 10:42:00 | 只看該作者
Minkowski Geometry,erval, which physically is just the time measured by a free particle travelling between the two events, is very different from the Euclidean distance: the length of one side of a triangle is always larger than the sum of the lengths of the other two (twin paradox), and lines are the curves with maximum length (generalized twin paradox).
23#
發(fā)表于 2025-3-25 13:15:54 | 只看該作者
Cosmology,sequences of the Einstein equation, which in the FLRW models reduces to the Friedmann equations for the density and radius of the Universe. We see how these equations imply that the Universe originated in a Big Bang, and will, according to the currently accepted cosmological parameters, expand forever.
24#
發(fā)表于 2025-3-25 17:47:31 | 只看該作者
25#
發(fā)表于 2025-3-25 23:16:04 | 只看該作者
Gravity,he gravitational field of a spherically symmetric body, and explain how these equations determine the motion given initial conditions. As an example, we compute the speed of a circular orbit, and use it to estimate the conditions under which we should expect relativistic corrections to Newtonian gravity.
26#
發(fā)表于 2025-3-26 00:29:27 | 只看該作者
27#
發(fā)表于 2025-3-26 05:26:44 | 只看該作者
28#
發(fā)表于 2025-3-26 11:31:47 | 只看該作者
29#
發(fā)表于 2025-3-26 16:41:53 | 只看該作者
30#
發(fā)表于 2025-3-26 18:15:44 | 只看該作者
General Relativity,e observation that curved space–time is locally flat, and implies that free-falling particles must move along geodesics (and light rays along null geodesics) just like in flat Minkowski space–time. Given the matter distribution, the space–time metric can be found by solving the Einstein equation, whose nature we describe.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 04:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
栾城县| 扬州市| 酒泉市| 于都县| 和田市| 延安市| 旬邑县| 泸水县| 南宁市| 高雄县| 商水县| 吐鲁番市| 新化县| 左云县| 井冈山市| 阿克| 闽清县| 田林县| 于田县| 河东区| 宣城市| 茌平县| 楚雄市| 隆尧县| 上虞市| 古蔺县| 明星| 海兴县| 天津市| 虹口区| 湖南省| 武强县| 开鲁县| 满洲里市| 武定县| 成都市| 临朐县| 天长市| 兴国县| 汾西县| 平武县|